
Ενσωματωμένα Συστήματα

Διδάσκον: Γρηγόριος Δουμένης

Διδακτικό Υλικό: Γρηγόριος Δουμένης, Νικόλαος Γιαννακέας, Ιωάννης Μασκλαβάνος

Μάθημα 6ο

Αναπτυξιακό Σύστημα MSP430
Αρχιτεκτονική-GPIOs

Digital i/o

 DSP MSP430 devices have up to eight digital I/O ports implemented, P1 to P8. Each port has
eight I/O pins.

 Every I/O pin is individually configurable for input or output direction, and each I/O line can be
individually read or written to.

 Ports P1 and P2 have interrupt capability.

 The digital I/O features include:

 Independently programmable individual I/Os

 Any combination of input or output

 Independent input and output data registers

 Individually configurable pullup or pulldown resistors

 On eZ430 board, RED LED is connected to P1.0

3

4

Copyri
ght

2009
Texas
Instru
ments

All
Rights
Reserv

ed
4

Copyright 2008 Texas Instruments

All Rights Reserved

www.msp430.ubi.pt

MSP430 GPIO (1/3)

 Board configuration

5

Copyright
2009 Texas
Instrument

s
All Rights
Reserved

www.msp4
30.ubi.pt

GPIO Block

MSP430 F5xx GPIO registers

 The MSP430 family defines 11 I/O ports, P0 through P10, although no chip implements more than 10 of
them. P0 is only implemented on the '3xx family. P7 through P10 are only implemented on the largest
members (and highest pin count versions) of the '4xx and '2xx families.

 The pins are divided into 8-bit groups called "ports", each of which is controlled by a number of 8-bit
registers. In some cases, the ports are arranged in pairs which can be accessed as 16-bit registers.

 The newest '5xx and '6xx families has P1 through P11, and the control registers are reassigned to provide
more port pairs. Each port is controlled by the following registers.

 PxIN Port x input. This is a read-only register, and reflects the current state of the port's pins.

 PxOUT Port x output. The values written to this read/write register are driven out the corresponding pins
when they are configured to output.

 PxDIR Port x data direction. Bits written as 1 configure the corresponding pin for output. Bits written as 0
configure the pin for input.

 PxSEL Port x function select. Bits written as 1 configure the corresponding pin for use by the specialized
peripheral. Bits written as 0 configure the pin for general purpose I/O. Port 0 ('3xx parts only) is not
multiplexed with other peripherals and does not have a P0SEL register.

 PxREN Port x resistor enable ('2xx & '5xx only). Bits set in this register enable weak pull-up or pull-down
resistors on the corresponding I/O pins even when they are configured as inputs. The direction of the pull is
set by the bit written to the PxOUT register.

MSP430 F5xx GPIO registers (II)

 PxDS Port x drive strength ('5xx only). Bits set in this register enable high current outputs. This increases output power,
but may cause EMI.

 Ports 0–2 can produce interrupts when inputs change. Additional registers configure this ability:

 PxIES Port x interrupt edge select. Selects the edge which will cause the PxIFG bit to be set. When the input bit changes
from matching the PxIES state to not matching it (i.e. whenever a bit in PxIES XOR PxIN changes from clear to set), the
corresponding PxIFG bit is set.

 PxIE Port x interrupt enable. When this bit and the corresponding PxIFG bit are both set, an interrupt is generated.

 PxIFG Port x interrupt flag. Set whenever the corresponding pin makes the state change requested by PxIES. Can be
cleared only by software. (Can also be set by software.)

 PxIV Port x interrupt vector ('5xx only). This 16-bit register is a priority encoder which can be used to handle pin-
change interrupts. If n is the lowest-numbered interrupt bit which is pending in PxIFG and enabled in PxIE, this register
reads as 2n+2. If there is no such bit, it reads as 0. The scale factor of 2 allows direct use as an offset into a branch table.
Reading this register also clears the reported PxIFG flag.

 Some pins have special purposes either as inputs or outputs. (For example, timer pins can be configured as capture inputs
or PWM outputs.) In this case, the PxDIR bit controls which of the two functions the pin performs when the PxSEL bit is
set. If there is only one special function, then PxDIR is generally ignored. The PxIN register is still readable if the PxSEL bit
is set, but interrupt generation is disabled. If PxSEL is clear, the special function's input is frozen and disconnected from
the external pin. Also, configuring a pin for general purpose output does not disable interrupt generation.

MSP430
Αρχιτεκτονική-Μνήμη

MEMORY MAP

MSP430 GPIO memory map

 P1OUT = 0x01; -> Goto to address 0x202 and write bits 00000001

 Symbolic mapping: https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-
files/166/msp430f5529.h9

10

Copyright
2009 Texas
Instrument

s
All Rights
Reserved

www.msp4
30.ubi.pt

MSP430 GPIO S/W Configuration

MSP430 GPIO programming

11

Launchpad Pins for LEDs/SwitchesLaunchpad → F5529 FR4133 FR5969 LED Color

LED1 P1.0 P1.0 P4.6
Red LED

(with Jumper)

LED2 P4.7 P4.0 P1.0 Green LED

Button 1 P2.1 P1.2 P4.5

Button 2 P1.1 P2.6 P1.1

HELLO WORLD

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= 0x01; // Set P1.0 to output direction

for (;;)

{

volatile unsigned int i; // volatile to prevent optimization

P1OUT ^= 0x01; // Toggle P1.0 using exclusive-OR - Red Blinks

i = 10000; // SW Delay

do i--;

while (i != 0);

}

13

Bit manipulations

 Port Initialization (8-bit access):

 Set P1.0 as output P1DIR=0x01; (0b00000001) then

 …… (other initializations) then

 Set P1.1 as input P1DIR=0x00; (0b00000000)

 Problem P1.0=0 !

 We need to change bit 1 of P1DIR
WITHOUT affecting bit 0

14

Bit (Boolean) operations

Άλγεβρα Boole (1ο Εξαμ.!!)
 AND: C=A&B;

A&1=A,
A&0=0

 OR: C=A|B;
A|1=1,
A|0=A

 XOR: C=A^B;
A^1=!A,
A^0=A

 Source http://www.glitovsky.com/Tutorialv0_4.pdf
15

Byte Boolean operations

Operations with masks
 AND: C=A&B;

 Change bit 3 of A to 0

16

Bit 7 Bit 6 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

A 0 0 0 0 1 0 1 0

B 0 1 0 0 0 1 1 0

A&B 0 0 0 0 0 0 1 0

Bit 7 Bit 6 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

A 0 0 0 0 1 0 1 0

B X X X X 0 X 1 X

Result 0 0 0 0 0 0 1 0

Byte Boolean operations

Operations with masks
 AND: C=A&B;

 Change bit 3 of A to 0

17

Bit 7 Bit 6 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

A 0 0 0 0 1 0 1 0

B 0 1 0 0 0 1 1 0

A&B 0 0 0 0 0 0 1 0

Bit 7 Bit 6 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

A 0 0 0 0 1 0 1 0

B X X X X 0 X 1 X

Result 0 0 0 0 0 0 1 0

Set P1DIR bit to zero

Operations with masks
 Set P1.0 as output P1DIR=0x01; (0b00000001) then

 …… Set P1.1 as input P1DIR=0x00; (0b00000000)

 Problem P1.0=0 !

 P1DIR= P1DIR & 0xFC; (0x11111101)
18

Bit 7 Bit 6 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P1DIR 0(X) 0(X) 0(X) 0(X) 0(X) 0(X) 0(X) 1 (X)

MASK
(OP)

Result X X X X X X 0 1 (X)

Set P1DIR bit to one

Operations with masks
 P1DIR is 0 upon reset (thus P1.1 is input)

However, P1.x might be set as input somewhere in the code (previously)

 Set P1.0 as output P1DIR=0x01; (0bXXXXXXX1) WITHOUT affecting the other
bits

 P1DIR= P1DIR | 0x01; -> P1DIR |= 0x01;

19

Bit 7 Bit 6 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P1DIR 0(X) 0(X) 0(X) 0(X) 0(X) 0(X) 0(X) 0 (X)

MASK
(OP)

Result X X X X X X X 1 (X)

Bit toggle

Blink the LED
 Each time the loop is executed

 If (P1.0 = 0) then P1.0 =1; (?!?)

 P1OUT=
20

Bit 7 Bit 6 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P1OUT X X X X X X X X

MASK
(OP)

Result X X X X X X X !X

EMBEDDED SYSTEMS LAB projects

21

WORKFLOW

 Learn the CCS IDE / Use the MSP board

 MSP board on loan (home project)

 Execute simple programs (Hello world)

 Assign mid-term project (timed execution)

 Decompose into exercises:

 Use GPIO (blink led / read button)

 Use timers (timed events)

 Use interrupts (timers / read button)

 Achieve low power execution (use LP modes)

 Mid-term project+presentation -> Grade

22

Sources and Material

 https://training.ti.com/msp430-workshop-series

 MSP_Design_workshop.pdf

 http://www.glitovsky.com/Tutorialv0_4.pdf

 Download CCS
http://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html

 CCS 10.x.x (win 64)

 CCS 8.3.1 (win 32)

 Various options:

 Download support for MSP430 only

 No need for driverlib, Energia,…

 OR
https://dev.ti.com/ (CCScloud, requires TI account)

23

https://training.ti.com/msp430-workshop-series
http://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html
https://dev.ti.com/

Design algorithm (using GPIO and Timers):

1. Blink the RED LED every 2 secs and the Green LED every sec.

2. Start/Stop the blink process via the button

3. Double-click switches GREEN LED between hi/lo frequency

(i.e. high freq=1Hz, low freq=2Hz)

4. Read the on-board temperature and/or voltage via the on-chip ADC

 Each step is a separate project (with potentially common code)

24

Copyright
2009 Texas
Instrument

s
All Rights
Reserved

www.msp4
30.ubi.pt

Mid-Term Project

HELLO WORLD

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= 0x01; // Set P1.0 to output direction

for (;;)

{

volatile unsigned int i; // volatile to prevent optimization

P1OUT ^= 0x01; // Toggle P1.0 using exclusive-OR - Red Blinks

i = 10000; // SW Delay

do i--;

while (i != 0);

}

25

ΑΣΚΗΣΗ (Project – I)

 Hello world (LED blink)

 Exercises:

 Reduce blink Frequency

 Blink RED/Green (alternating)

 Blink Green twice as fast

26

Εισαγωγή στους Χρονιστές/Μετρητές

 Οι χρονιστές (Timers) είναι κυκλώματα των μικροελεγκτών τα οποία
«δίνουν» ρυθμό στα υπόλοιπα κυκλώματα

 Δεν υπάρχει μόνο ένας χρονιστής αλλά περισσότεροι ώστε να
υπάρχουν διαφορετικές επιλογές «ρυθμού» ανάλογα με την
εφαρμογή

 Οι χρήση των χρονιστών μπορεί να βελτιστοποιήσει την κατανάλωση
της ενέργειας ενός ενσωματωμένους συστήματος. Να μην
σπαταλώνται πόροι σε περίπτωση που δεν χρειάζονται

 Συνδυάζονται με λειτουργίες χαμηλής ισχύος (Low Power Modes –
LPM) για περεταίρω μείωση της κατανάλωσης

Εισαγωγή στους Χρονιστές/Μετρητές

5 3 3 7TA0CLK

Out:TA0.n
In: TA0.CCInA

MSP430F5529

Εισαγωγή στους Χρονιστές/Μετρητές

MSP430 Timers

5 3 3 7TA0CLK

Out:TA0.n
In: TA0.CCInA

MSP430F5529

Timer_A/B Nomenclature
Timer_An: Where n = # of CCR’s

TAx: Instance of Timer_A

Therefore:

TA0 is the first instance of Timer_A5

Χρονιστές/Μετρητές
Λειτουργία

 Flexible clock sources & distribution:

 5 clocks from 7 sources (2 external, 5 internal)

 Selections suitable for high-speed & low-power operations

 Wide range of operating frequency

 10kHz to 48 MHz

 Fine intermediate steps with dividers & tuning

 Configurable & robust system:

 Run-time lockable configuration

 Failsafe mechanism with interrupts for external sources

http://www.ti.com/tool/msp430ware

◆ Overview of MSP430 Timers

◆ Timer Basics: How timers work

◆ Counter

◆ Capture

◆ Compare

◆ Timer Details: Configuring TIMER_A

◆ 1. Counter: TIMER_A_configure…()

◆ 2. Capture: TIMER_A_initCapture()
Compare: TIMER_A_initCompare()

◆ 3. Clear Interrupt Flags and TIMER_A_startTimer()

◆ 4. Interrupt Code (Vector & ISR)

◆ Differences between Timer’s A and B

◆ Lab Exercise

Timer/Counter Basics

Counter
Register

15 0

Clock Input
 Clock
 GPIO Pin (TACLK)

Counter
Overflow Action
 Interrupt (TAIFG)

Notes
 Timers are often called “Timer/Counters” as a counter is the essential element
 “Timing” is based on counting inputs from a known clock rate

TAR

Input Counter Action

What happens on each clock input?

Timer/Counter Basics

Counter
Register

15 0

Counter
Overflow Action
 Interrupt (TAIFG)

FFFF

FFFE

FFFD

04

03

02

01 01

Each pulse
of clock input

increments the
counter register

Interrupt occurs when
timer overflows back
to zero

Notes
 Timers are often called “Timer/Counters” as a counter is the essential element
 “Timing” is based on counting inputs from a known clock rate
 Actions don’t occur when writing value to counter

TAR

Can I 'capture' a count/time value?

Clock Input
 Clock
 GPIO Pin (TACLK)

Counter
Register

15 0TAR

Counter
Overflow Action
 Interrupt (TAIFG)

Notes
 Capture time (i.e. count value) when Capture Input signal occurs

Capture Basics

Alternatively, use CCR for compare...

Clock Input
 Clock
 GPIO Pin (TACLK)

Capture/Compare Register (CCRn)

Counter
Register

15 0TAR

Counter
Overflow Action
 Interrupt (TAIFG)

Capture Input signal triggers
transfer:

Counter→ Capture

Notes
 Capture time (i.e. count value) when Capture Input signal occurs
 When capture is triggered, count value is placed in CCR and an interrupt is generated

Capture Basics

Alternatively, use CCR for compare...

Clock Input
 Clock
 GPIO Pin (TACLK)

Capture/Compare Register (CCRn)

Counter
Register

15 0TAR

Counter
Overflow Action
 Interrupt (TAIFG)

Capture Input signal triggers
transfer:

Counter→ Capture

Notes
 Capture time (i.e. count value) when Capture Input signal occurs
 When capture is triggered, count value is placed in CCR and an interrupt is generated
 Capture Overflow (COV): indicates 2nd capture to CCR before 1st was read

Capture Input
 CCInA
 CCInB
 Software

Capture Actions
 Interrupt (CCIFGn)
 Signal peripheral
 Modify pin (TAx.n)

Capture Basics

Alternatively, use CCR for compare...

Clock Input
 Clock
 GPIO Pin (TACLK)

Χρονιστές/Μετρητές
Προγραμματισμός

Χρονιστές/Μετρητές
Προγραμματισμός

Χρονιστές/Μετρητές
Προσκήνιο – Παρασκήνιο

Χρονιστές/Μετρητές
Προσκήνιο – Παρασκήνιο

Χρονιστές/Μετρητές
Προγραμματισμός

Χρονιστές/Μετρητές
Προγραμματισμός

Χρονιστές/Μετρητές
MSP430 – Timer_A

 Asynchronous 16-Bit timer/counter

 Continuous,
up-down,
up count modes

 Multiple capture/compare registers

 PWM outputs

 Interrupt vector register for fast
decoding

 Can trigger DMA transfer

 On all MSP430s
Compararator 2

CCI

Count

Mode

Set

TAIFG

TACCR2

ACLK

SMCLK

TACLK

INCLK

GND

VCC

CCI2A

CCI2B

Set

CCIFG2

Output

Unit2

CCR0

SCCI Y
A

EN

CCR1

CCR2

Capture

Mode

16-bit Timer

TAR

70

Χρονιστές/Μετρητές
MSP430 – Timer_A

0FFFFh

0h

CCR0

Stop/Halt
Timer is halted

Up
Timer counts between 0 and CCR0

0FFFFh

0h

Continuous
Timer continuously counts up

0FFFFh

0h

CCR0

UP/DOWN Mode

Up/Down
Timer counts between 0 and CCR0 and 0

CCR – Count Compare Register

TACCR1 CCIFG

TACCR2 CCIFG

TAIFG

TIMERA1_VECTOR

TAIV

TACCR1, 2 and TA interrupt flags are prioritized and combined
using the Timer_A Interrupt Vector Register (TAIV) into another
interrupt vector

TACCR0 CCIFG TIMERA0_VECTOR

The Timer_A Capture/Comparison Register 0 Interrupt Flag
(TACCR0) generates a single interrupt vector:

Your code must
contain a handler to
determine which
Timer_A1
interrupt triggered

No handler required

Χρονιστές/Μετρητές
MSP430 – Timer_A Interrupts

#pragma vector = TIMERA1_VECTOR

__interrupt void TIMERA1_ISR(void)

{

switch(__even_in_range(TAIV,10))

{

case 2 : // TACCR1 CCIFG

P1OUT ^= 0x04; break;

case 4 : // TACCR2 CCIFG

P1OUT ^= 0x02; break;

case 10 : // TAIFG

P1OUT ^= 0x01; break;

}

}

0xF814 add.w &TAIV,PC

0xF818 reti

0xF81A jmp 0xF824

0xF81C jmp 0xF82A

0xF81E reti

0xF820 reti

0xF822 jmp 0xF830

0xF824 xor.b #0x4,&P1OUT

0xF828 reti

0xF82A xor.b #0x2,&P1OUT

0xF82E reti

0xF830 xor.b #0x1,&P1OUT

0xF834 reti

IAR C code

Assembly

code

Source TAIV Contents
No interrupt pending 0
TACCR1 CCIFG 02h
TACCR2 CCIFG 04h
Reserved 06h
Reserved 08h
TAIFG 0Ah
Reserved 0Ch
Reserved 0Eh

0

TAIV

15

xxxx00000000000

0

Χρονιστές/Μετρητές
MSP430 – Timer_A Interrupts

 Completely automatic

 Independent frequencies with different duty cycles can be generated
for each CCR

 Code examples on the MSP430 website

TEST

Vcc

P2.5

Vss

XOUT

XIN

RST

P2.0

P2.1

P2.2

TA2/P1.7

P1.6

P1.5

P1.4

P1.3

TA1/P1.2

P1.1

P1.0

P2.4

P2.3

MSP430F11x1

CCR0

CCR1

CCR0

CCR1

CCR0

CCR1

CCR2 CCR2 CCR2

Χρονιστές/Μετρητές
MSP430 – Timer_A PWM

TACCR1:

Ref delay / ADC trigger

TAIFG:

Reference & ADC on

TAR

0

TACCR1 = 557

65536

ADC12IFG:
Process ADC result

Ref/ADC Off
CPU Active Mode

17ms

2s

Example: ADC12

UART ...

Χρονιστές/Μετρητές
MSP430 – Timer_A Hardware control

 Found on all MSP430 devices

 Two modes

 Watchdog

 Interval timer

 Access password protected

 Separate interrupt vectors for POR and interval
timer

 Sourced by ACLK or SMCLK

 Controls RST/NMI pin mode

 WDT+ adds failsafe/protected clock

16-Bit

Counter

Password

Compare

EQU

EQU
R / W

MDBWDTCTL

Control

Register

Χρονιστές/Μετρητές
MSP430 – Timer_A Hardware control

 If ACLK / SMCLK fail, clock
source = MCLK
(WDT+ fail safe feature)

 If MCLK is sourced from a
crystal, and the crystal fails,
MCLK = DCO
(XTAL fail safe feature)

Fail-Safe

Logic

16-bit

Counter

A EN

SMCLK

ACLK

MCLK

1

1

CLK

WDTSSEL WDTHOLD WDT clock source …

Χρονιστές/Μετρητές
MSP430 – Watchdog Timer Failsafe

WDT: Common Design Issues

 Program keeps resetting itself!

 Program acting wacky – how did execution get to that place?

 Try setting interrupt near beginning of main() to see if code is re-starting

 CPU seems to freeze before even getting to first instruction

 Is this a C program with a lot of initialized memory?

 Generally can occur only with very large-memory versions of the device

 Solution: Use __low_level_init() function, stop watchdog there

void main(void)

{

WDTCTL = WDTPW+WDTHOLD; // Stop the dog

.

.

}

ΑΣΚΗΣΗ (Project – II)

 Hello world (LED blink with Timer IRQ)

 Exercises:

 Reduce blink Frequency

 Blink RED/Green (alternating)

 Blink Green twice as fast

55

TIMER SETUP

#include "msp430.h"

volatile unsigned int time_stuck=0;

int main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

TA0CCTL0 = CCIE; // CCR0 interrupt enabled

TA0CTL = TASSEL_2 | MC_1 | ID_3; // SMCLK/8, upmode

TA0CCR0 = 40000; // Blink the LEDs every ~1sec

_BIS_SR(GIE); // Enter w/ interrupt

56

TIMER IRQ

#pragma vector=TIMER0_A0_VECTOR

__interrupt void Timer_A0 (void)

{

time_stuck=1; // Signal timer event

}

57

TIMER LED BLINK

volatile unsigned int d_freq=0;

volatile unsigned int i=0;

volatile unsigned int time_count=0;

volatile unsigned int cycle_count=0;

for (;;)

{

if (time_stuck==1) {

time_stuck=0; //clear the flag, to permit next “interrupt”

cycle_count++; //this part is for the “double frequency” feature

if (d_freq) { //if in double frequency toggle GREEN LED

P4OUT ^=0x80;}

if (cycle_count==2) {

cycle_count=0;

P1OUT ^=0x01; // toggle RED LED(every ~1 sec)

if (!d_freq) P4OUT ^=0x80;

}

} //end if (time_stuck)

} //end for

return 0;

} 58

