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Naive Bayes is a simple probabilistic classifier based on applying Bayes' theorem (or Bayes's rule) with 
strong independence (naive) assumptions. More details can be found on Wikipedia Web site : 
http://en.wikipedia.org/wiki/Naive_bayes

Explanation of Bayes's rule:

Bayes's rule: P(H | E) = P(E | H) x P(H)
  P(E)

The basic idea of Bayes's rule is that the outcome of a hypothesis or an event (H) can be predicted based 
on some evidences (E) that can be observed. From Bayes's rule, we have

(1) A priori probability of H or  P(H): This is the probability of an event before the evidence is observed.
(2) A posterior probability of H or  P(H | E): This is the probability of an event after the evidence is 

observed.

Example 1: To predict the chance or the probability of raining, we usually use some evidences such as the 
amount of dark cloud in the area.

Let H be the event of raining and  E be the evidence of dark cloud, then we have
P(raining | dark cloud) = P(dark cloud | raining) x P(raining)

     P(dark cloud)

– P(dark cloud | raining) is the probability that there is dark cloud when it rains. Of course, “dark 
cloud” could occur in many other events such as overcast day or forest fire, but we only consider 
“dark cloud” in the context of event “raining”. This probability can be obtained from historical data 
recorded by some meteorologists.

– P(raining) is the priori probability of raining. This probability can be obtained from statistical 
record, for example, the number of rainy days throughout a year.

– P(dark cloud) is the probability of the evidence “dark cloud” occurring. Again, this can be obtained 
from the statistical records, but the evidence is not usually well recorded compared to the main 
event. Therefore, sometimes the full evidence, i.e., P(dark cloud), is hard to obtain.

Explanation of Naive Bayes:
As you can see from Example 1, we can predict an outcome of some events by observing some 

evidences. Generally, it is “better” to have more than one evidence to support the prediction of an event. 
Typically, the more evidences we can gather, the better the classification accuracy can be obtained. However, the 
evidence must relate to the event (must make sense). For example, if you add an evidence of “earthquake” to 
Example 1, the above model might yield worse performance. This is since “raining” is not related to the 
evidence of “earthquake”, i.e., if there is an earthquake, it doesn't mean that it will rain.

Suppose we have more than one evidence for building our NB model, we could run into a problem of 
dependencies, i.e., some evidence may depend on one or more of other evidences. For example, the evidence 
“dark cloud” directly depends on the evidence “high humidity”. However, including dependencies into the 
model will make it very complicated. This is because one evidence could depend on many other evidences. To 
make our life easier, we make an assumption that all evidences are independent of each other (this is why we call 
the model “naive”).

(Note: The complete Bayes's rule without the “independence assumption is called 
“Bayesian Network”.  If you're interested, you can read more from http://en.wikipedia.org/wiki/Bayesian_network)

http://en.wikipedia.org/wiki/Naive_bayes
http://en.wikipedia.org/wiki/Bayesian_network


Bayes's rule for multiple evidences::

P(H | E1, E2, ..., En) = P( E1, E2, ..., En  | H) x P(H)
                      P(E1, E2, ..., En)

With the independence assumption, we can rewrite the Bayes's rule as follows: 

P(H | E1, E2, ..., En) = P( E1 | H) x P( E2 | H) x ... P( En | H) x P(H)
                        P(E1, E2, ..., En)

Example 2: From Example 1, we could have the following NB model for raining,

   P(raining | dark cloud, wind speed, humidity) 
=  P(dark cloud | raining) x P(wind speed | raining) x P(humidity | raining) x P(raining)

          P(dark cloud, wind speed, humidity)

Example 3:  To understand how to build an NB model, let's use the example from our lecture slides (Chapter 3 
of the data mining book).  Given the weather data set for predicting play condition. There are 14 instances (or 
examples) and 5 attributes. All attributes are nominal.

We need to build the NB model from the given above data set. The result are shown below:



The top part of the table contains the frequency of different evidences. For example, there are 2 instances 
(examples) from  the data set showing (outlook=sunny) when (play=yes). Once you have finished counting all 
frequency, we need to build the NB model by calculating all P(E | H) and P(H). For example,

P(outlook=sunny | play=yes) = 2/9
P(play=yes) = 9/14

Once we have the NB model, we can use it to predict the event “play” based on different set of 
evidences. For example, if we observe (outlook=sunny), (temperature=cool), (humidity=high) and (windy=true), 
then we can estimate the posterior probability as follows:

We can ignore Pr(E) because we only need to “relatively” compare the value to other class. Therefore we 
have the following results:

Solving “zero-frequency” problem with smoothing technique:
If you observe from the previous NB model table,  P(outlook=overcast | play=no) = 0/5. This will create 

a problem when we calculate for P(“no”), since the result will be equal to zero. To solve this, we can use the 
smoothing technique. One of the simplest smoothing techniques is called Laplace estimation. 

For example, for  attribute “outlook” when play=no, we can apply Laplace estimation as follows:

P(outlook=sunny | play=no) =  3 +   µ  p  1

     5 + µ
P(outlook=overcast | play=no) =   0 +   µ  p  2

      5 + µ
P(outlook=overcast | play=no) =   2 +   µ  p  3

       5 + µ  
where (p1 + p2 + p3) = 1.0



By assuming that all evidences are equally distributed,  p1 = p2 = p3 = 1/3

P(outlook=sunny | play=no) =  3 +   µ/3  =  3 + 3  /3  = 4/8
     5 + µ      5 + 3

P(outlook=overcast | play=no) =   0 +   µ/3  =  0 + 3  /3  = 1/8
      5 + µ      5 + 3

P(outlook=raining | play=no) =   2 +   µ/3  =  2 + 3/3 = 3/8
       5 + µ      5 + 3

Naive Bayes on WEKA's Explorer:
We can use WEKA (http://www.cs.waikato.ac.nz/ml/weka/) machine learning software tool to generate 

and test NB model automatically. To generate the model, follow these steps.

(1) Run WEKA, click on “Explorer” mode button..
(2) Click on “Open files ...” tab and select the file “weather.nominal.arff” from subdirectory “data”.
(3) Click on “Classify” tab and click on “choose” button. Then select the algorithm “weka/classifiers/bayes/

NaiveBayes/Simple”.
(4) To generate the model and test, click on the “Start” button.
(5) The tool automatically generates model as follows:

=== Classifier model (full training set) ===
Naive Bayes (simple)

Class yes: P(C) = 0.625  
   
Attribute outlook
sunny overcast rainy
0.25      0.41666667 0.33333333
Attribute temperature
hot mild cool
0.25      0.41666667 0.33333333
Attribute humidity
high normal
0.36363636 0.63636364
Attribute windy
TRUE FALSE
0.36363636 0.63636364

Class no: P(C) = 0.375  
   
Attribute outlook
sunny overcast rainy
0.5       0.125     0.375     
Attribute temperature
hot mild cool
0.375     0.375     0.25      
Attribute humidity
high normal
0.71428571 0.28571429
Attribute windy
TRUE FALSE
0.57142857 0.42857143

Note: NaiveBayesSimple uses Laplace estimation technique to avoid the zero frequency problem. The result 
matches the one in the example.

http://www.cs.waikato.ac.nz/ml/weka/


Naive Bayes for Text Classification:

Although Naive Bayes uses the independence assumption, the model is widely used in many 
applications. Some of the interesting applications are text classification and information filtering (such as spam 
filtering). One of the main reasons that NB model works well for text domain because the evidences are 
“vocabularies” or “words” appearing in texts and the size of the vocabularies is typically in the range of 
thousands. The large size of evidences (or vocabularies) makes NB model work well for text classification 
problem.

For text domain, we can build the NB model in the similar fashion as in the previous example. Let's take 
a look at the following example.

Example 4: Text classification using NB model. 
Consider the following data set. We have 6 documents D0 ... D5 as the training data set. Suppose we 

extract and consider only 6 vocabularies from all documents. There are two classes (categories) of documents: 
“terrorism” and “entertainment”. Documents are preprocessed and shown in the following table. The numbers 
are the frequency of the word in the documents. For example, the word “kill” occurs twice in the document D0.

Phase 1: Building the NB model
The NB model for the above data set is as shown below:

|V| = the number of vocabularies
P(ci) = the priori probability of each class = number of documents in a class / number of all documents

P (Terrorism) = 3/6 = 0.5 
P (Entertainment) = 3/6 = 0.5 

ni = the total number of word frequency of each class 
nTerrorism = 2+1+3+1+1+1+1+1+1+2+1 = 15
nEntertainment = 1+2+1+1+1+1+1+2+2 = 12

P(wi | ci) =  the conditional probability of keyword occurrence given a class 
For example, P (kill | Terrorism) = (2 + 1 + 1) / 15 = 4/15

P (kill | Entertainment) = (0 + 0 + 0) / 12 = 0/12
To avoid the “zero frequency” problem, we apply Laplace estimation by assuming a uniform distribution 

over all words as follows:
P (kill | Terrorism) = (2 + 1 + 1 + 1) / (15 + |V|) = 5/21 = 0.2380
P (kill | Entertainment) = (0 + 0 + 0 + 1) / (12 + |V|) = 1/18 = 0.0555



Phase 2: Classifying a test document
To classify a test document Dt, we have to calculate the “posterior” probabilities, P(ci | W) for each class 

as follows:

P(ci | W) = P(ci) x ∏
j=1

V

P wj∣ci

P(Terrorism | W) =  P(Terrorism) x P(kill | Terrorism) x P(bomb | Terrorism) x P(kidnap | Terrorism) x 
                      P(music | Terrorism) x P(movie | Terrorism) x P(TV | Terrorism)

   = 0.5 x 0.23802 x 0.19041 x 0.33332  x 0.04760 x 0.09520 x 0.09521 
   = 0.5 x 0.0566 x 0.1904 x 0.1110 x 1 x 1 x 0.0952 

     = 5.7 x 10  -5  
      P(Entertainment | W) =  P(Entertainment) x P(kill | Entertainment) x P(bomb | Entertainment) x 

P(kidnap | Entertainment) x P(music | Entertainment) x 
   P(movie | Entertainment) x P(TV | Terrorism)

   = 0.5 x 0.05552 x 0.11111 x 0.11112  x 0.33330 x 0.27770 x 0.11111 
   = 0.5 x 0.0030 x 0.1111 x 0.0123 x 1 x 1 x 0.1111 

     = 2.27 x 10  -7  

Since P(Terrorism | W) has the highest value, therefore Dt is classified into “Terrorism”. This makes 
sense because Dt contains many words related to terrorism such as “kill”, “bomb” and “kidnap”.

Underflow prevention:
As you can observe from the above example, the “posterior” probability value is very small. Typically 

the number of conditional probabilities is in the range of thousands or more (number of words appearing in a 
document collection), the value will be too low for the CPU to handle. This problem is referred to as the 
underflow problem. To solve this problem, we can take logarithm on the probabilities as follows:

P(Terrorism | W) = log(0.5 x 0.23802 x 0.19041 x 0.33332  x 0.04760 x 0.09520 x 0.09521)
   = log(0.5) + 2 log(0.2380) + 1 log(0.1904) + 2 log(0.3333) + 0 log(0.0476) + 
                        0 log(0.0952) + 1 log (0.0952)
   = – 0.3010 – 1.2468 – 0.7203 – 0.9543 + 0 + 0  – 1.0213
   = –  4.2437

    P( Entertainment  | W) = log(0.5 x 0.05552 x 0.11111 x 0.11112  x 0.33330 x 0.27770 x 0.11111)
   = log(0.5) + 2 log(0.0555) + 1 log(0.1111) + 2 log(0.1111) + 0 log(0.3333) + 
                        0 log(0.2777) + 1 log (0.1111)
   = – 0.3010 – 2.511 – 0.9542 – 1.9085 + 0 + 0  –  0.9542
   = –  6.6289

Again, since P(Terrorism | W) has the higher value, therefore Dt is classified into “Terrorism”. You can 
also observe that the final calculated values were scaled nicely so that the “underflow” problem is avoided.

Note: We can use the following property of logarithm:      log (x*y) = log(x) + log(y)    and    log xy = y * log (x)


