ALGORITHMS & ADVANCED
DATA STRUCTURES (#2)

O




Input: A sequence of n numbers a4, a,, ..., a,

Output: A permutation a'y , a’,, ..., a’,, of the input

sequence such that

a,<ad,<-<a,

Example this instance: 31, 41, 59, 26, 41, 58



Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications. Non-obvious sorting applications.
List files in a directory. Data compression.
Organize an MP3 library. Computer graphics.
List names in a phone book. Interval scheduling.
Display Google PageRank Computational biology.
results. Minimum spanning tree.
Supply chain management.
Problems become easier once sorted. Simulate a system of particles.
Find the median. Book recommendations on
Find the closest pair. Amazon.
Binary search in a database. Load balancing on a parallel
Identify statistical outliers. computer.

Find duplicates in a mailing list.



For every input instance, halts with correct output

Correct algorithm then solves the problem



Which is the best for a given application
Number of items
Somehow sorted
Restrictions on the values
Storage to be used
etc



InsertionSort (A, n)
for 1i = 2 to n

key = A[i]

j=1i-1

while (j > 0) and (A[j] > key)
A[j+1] = A[3]]
J=3-1

A[j+1] = key



Use a to understand why an algorithm
gives the correct answetr.

(for InsertionSort)
At the start of each iteration of the “outer” for loop
(indexed by 1) the subarray A[1..I-1] consists of the
elements originally in A[1..1-1] but in sorted order.



To with a we need to show
things:

Invariant is true prior to the first iteration of the loop.

If the invariant is true before an iteration of the loop, it remains true
before the next iteration.

When the loop terminates, the invariant (usually along with the reason
that the loop terminated) gives us a useful property that helps show that
the algorithm is correct.



Correctness proof

Loop invariant
InsertionSort(A) At the start of each iteration of the
1. initialize: sort A[1] “outer” for loop (indexed by i) the
2. fori1=2to A.length subarray A[1..i-1] consists of the
2- key - All] elements originally in A[L..i-1] but
5 while j > 0 and A[j] > key in sorted order.
6. Al+1] = A[]
1. 1=]-
8. A[] +1] = key

Initialization o
Just before the first iteration, i =2 A[l..i-1] = A[1], which is the
element originally in A[1], and it is trivially sorted.




Loop invariant

InsertionSort(A) At the start of each iteration of
1. initialize: sort A[1] y . :
2. fori=2toA.length the “outer” for loop (indexed
2. key = A[i] by 1) the subarray A[1..i-1]
: =1- -
E while j >0 and A[j] > key co_nsflsts of_ the elements |
6. Afj+1] = A[j] originally in A[1..1-1] but in
/. 1=1]- sorted order.
8. A[j +1] = key

Maintenance
Strictly speaking need to prove loop invariant for “inner” while loop.
Instead, note that body of while loop moves A[i-1], A[i-2], A[i-3], and so
on, by one position to the right until proper position of key is found (which
has value of A[i]) = invariant maintained.



Loop invariant

InsertionSort(A) At the start of each iteration of
1. initialize: sort A[1] the “outer” for loop (indexed
2. fori=2toA.length by i) the subarray A[1..i-1]

3 key = A[i] -

) : Zi_- consists of the elements

5. while j >0 and A[j] > key originally in A[1..i-1] but in

6. A[j+1] = AJj] sorted order.

7. j=]-

8. Al +1] = key

Termination
The outer for loop ends when i > n; thisiswheni=n+1 = -1 =n.
Plug n for i-1 in the loop invariant = the subarray A[1..n] consists of
the elements originally in A[1..n] in sorted order.



Insertion sort Algorithm

INSERTION-SORT(A) cost  times
1 for j « 2tolength[A] C n
2 key < A[j] s n—1
3 > Insert Al j| into the sorted
sequence A[l..j —1]. 0 n—1
4 [« j—1 C4 n— |
5 while i > 0and A[i] > key Cs D ieal
6 Ali + 1] < A[i] C ELE{{; - 1)
7 i <—1—1 o E?=E(rf_l)
8 Ali + 1] « key Cy n— 1

InsertionSort is an in place algorithm:
the numbers are rearranged within the
array with only constant extra space.




Analyzing Insertion Sort

T(n) = ecn+caln—1)+cym—1) —|—csztj + cg E{t_,- —1)

j=2 Jj=2

+e ) (=1 +csn—1).

j=2




Analysis




Upper Bound Notation

» We say InsertionSort’s run time is O(1?)
o Properly we should say run time is in O(n?)

o Read O as “Big-O” (you’ll also hear it as “order”)

* In general a function

o f(n) is O(g(n)) if there exist positive constants ¢ and n, such
that f(n) <c-g) foralln>n,

» Formally

O O(g(n)) ={ f(n): 3 positive constants ¢ and n, such that f(n) <c
-g(n) Vn=>n,}




Insertion Sort Is O(n?)




Big O Fact




Lower Bound Notation




A function f(n) is ®(g(n)) if 3 positive constants c,,
c,, and n, such that

c,g(n) <f(n)<c,gn) vnx>n,

Theorem
f(n) is ®(g(n)) iff f(n) is both O(g(n)) and Q2(g(n))



Example: Fibonaccl numbers




Algorithm 1: Use recursion




Alg 2: For Loop




Which One is Better?




Analysis of Algorithm 1




Analysis of Algorithm 2




Algorithm 2 runs faster in average and worst cases.
If the Fibonacci number is quite small, Algorithm 1.

Time




» We are more interested in how an algorithm behaves
as the problem size goes large.
All algorithms behave similar under a small problem size.

Time




» A relatively easy to understand algorithm

» Sorts an array in passes
Each pass selects the next smallest element

At the end of the pass, places it where it belongs
» Efficiency is O(n?), hence called a gquadratic sort

» Performs:
O(n?) comparisons
O(n) exchanges (swaps)



