ALGORITHMS & ADVANCED
DATA STRUCTURES (#4)

O

Designing algorithms

= 1t Technique: Divide and conquer
= Divide the problem into a number of sub-problems.

= Conquer the sub-problems by solving them recursively.

= Base case: If the sub-problems are small enough, just solve them
by brute force.

= Combine the sub-problem solutions to give a solution to the
original problem

Mergesort

Mergesort — more details

= Each sub-problem as sorting a sub-array A[p . . rl.

« Initially, p = 1 and r = n, but these values change as we recursively
solve sub-problems.

= TosortA[p..r]:
»« Divide by splitting into two sub-arrays
= Alp..q]
= Alg + 1..r], where q is the halfway point of A[p . . r].

= Conquer by recursively sorting the two sub-arrays A[p . . g] and
Alg+1..r].
= Combine by merging the two sorted sub-arrays A[p .. g] and A[q
+ 1..r] to produce a single sorted sub-array A[p . . r].
= MERGE(A, p, g, r) // basic “sort” operation

= The recursion ends when the sub-array has just 1 element, so that it’s
trivially sorted.

= Input: 2 sorted sub-array A/p..q/ and A/g+1..r]

= Output: A sorted sub-array A/p..r] which contains
all the elements.

s Merge(A,p,q,T)
= while there are still elements in the 2 sub-arrays do
= Compare the 1st elements of the sorted 2 sub-arrays.

= Move the minimum of them from its corresponding list to the
end of output sub-array.

ifp<r // Check for base case

theng <« (p +r)/2 //Divide
MERGE-SORT(A, p, q) // Conquer
MERGE-SORT(A,q + 1, 1) // Conquer
MERGE(A, p, q,) // Combine

= Initial call: MERGE-SORT(A, 1, n)

Example with n=8

rtdarr
[7]
/ \ merge
BEREL 6|
/\ /\

5|4 ?|1 3|2

MMMMW
FEEFTEEE

1 2 3 4 5 6 7 8
initial array

ay
6
A

Example with n=11
©

sorted array

ol
. /\ /\

f\]f\ f\f\m@

dEBEOn

[7]2]
AV A VI
PEED R

1 2 3 4 5 6 7 8 9 10 11
initial array

2 3
2|2

[]
—_—

Merge-Sort(A, p,)
If(p<r)

q=I(p+r)/2]
Merge-Sort(A, p, q);

Merge-Sort(A, q+1, r);

Merge(A, p, q, 1);

[[T(Nn)
1/10(1)
1/10(1)
[T(n/2)
[T(n/2)
[/®(n)

If the problem size is small, say c for some constant
¢, we can solve the problem in constant, i.e., ©(1)
time.

Let T(n) be the time needed to sort for input of size
n.

Let cn be the time needed to merge 2 lists of total
size n. We know that cn = ®(n).

Assume that the problem can be split into 2
subproblems in constant time and that c = 1.

Recurrences

0 n=0 0 n=0

s(n) =+ s(n) =+
s(h-1)+c n>0 s(h-1)+n n>0
C n=1 c N1

T(n) =+ T(n) =+

2T(2j+c n>1

aT(EjH:n n>1

How to we find T(n)

Recursion tree

AN

T(n/2) T(n/2) cn/2 cn/2

AYETA

T(n/4) T(n/4) T(n/4) T(n/4

Continue expanding until the problem sizes get down to 1:

CH II‘!IIld- Cn
A

N
A o

cn/4 cn/4 cnf4 cnfd i cp

AWARANWA

Total: en lg n + cn

cnf2 wanile: CH ReCurSiOn tree

Top level: cn
Next level: ¢(n/2)+c(n/2)=cn
Next next level: 4¢(n/4)=cn

General:
i-th level from top has 2! nodes
each with cost c(n/ 2})
Total cost of this level: en
Bottom level: n nodes, each cost ¢

1s Ign+1, where n: input size (number of leaves)
Use induction to prove this

Base case: n=1, only one level 1g1 =0

Inductive Hypothesis: number of levels with

2t leavesi1slg2t+1 =i+ 1

Prove that for n = 2'*! leaves (power of 2) one

more level than with 2! leaves, i.e. (i+1)+1=lg
2+ +1

Running time of Merge-sort

Practice

Suppose you are a freelancer and that you plan to work at
a Mykonos resort for some part of the n-day summer
season next year.

Unfortunately, there isn’t enough work for you to be paid
every day and you need to cover your own expenses (but
you want to go).

Fortunately, you know in advance that if you are at the
resort on the it day of the season, you’ll make p, euros
where p; could be negative (if expenses are more than
earnings) or positive (if expenses are less than earnings).

To maximize your earning you should choose
carefully which day you arrive and which day you
leave; the days you work should be consecutive and
you don’t need to work all season. For example, if n =
8andp,=-9,p,=10,p;=-8,p,=10,p; =5, Ps
= —4,p,= -2, pg = 5 then if you worked from day 2
to day 5, you would earn 10 — 8 + 10 + 5 = 17 euros in
total. Assume the resort pays your airtickets.

Trivial if only positive numbers (assume not)
Need to check O(n?) pairs
For each pair, find the sum

Thus total time is (see next)

Calculate the value val(i,j) for each pair i<j and return max

FIND-MAXIMUM-SUBARRAY-BF1(A, 1, n)

max=A[1]
fori=1ton
forj=iton
val=0
for x=110]
val=val+A[Xx]
if val>max
max=val

return max

Can I do better?

Reuse previous values

FIND-MAXIMUM-SUBARRAY-BF2(A, 1, n)
max=A[1]
fori=1ton
val=0
forj=iton
val=val+A[j]
if val>max
max=val
return max

» Allow..high]
» Divide in the middle:
Allow,mid], A[mid+1,high]

» Any subarray A[i,..j] is

(1) Entirely in A[low,mid]

(2) Entirely in A[mid+1,high]

(3) In both
* (1) and (2) can be found recursively

* (3) find maximum subarray that crosses midpoint

Need to find maximum subarrays of the form
Ali.mid], A[mid+1..j], low <=1, j <= high

» Take subarray with largest sum of (1), (2), (3)

crosses the midpoint : :
o _——ﬂ—__PE . Almid + 1.. j]
low nid high low i mid —————— high
— mid+1 t——— S — mid + 1 J

entirely in A[low . . mid] entirely in A[mid + 1. .high] Ali .. mid]
(a) (b)

Find-Max-Cross-Subarray(A,low,mid,high)
left-sum = -«
sum = 0
for i = mid downto low
sum = sum + AJi]
if sum > left-sum then
left-sum = sum
max-left =i
right-sum = -co
sum = 0
for j = mid+1 to high
sum = sum + A[j]
if sum > right-sum then
right-sum = sum
max-right = j
return (max-left, max-right, left-sum + right-sum)

FIND-MAXIMUM-SUBARRAY(A, low, high)

if high == low
return (low, high, A[low])/ // base case: only one element
else

mid =(low + high)/2
(left-low, left-high, left-sum)=FIND-MAXIMUM-SUBARRAY(A, low, mid)
(right-low, right-high, right-sum)=FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
(cross-low, cross-high, cross-sum)=FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high)
if left-sum >= right-sum and left-sum >= cross-sum
return (left-low, left-high, left-sum)
elseif right-sum >= left-sum and right-sum >= cross-sum
return (right-low, right-high, right-sum)
else
return (cross-low, cross-high, cross-sum)

Time analysis

Another Divide and Conquer Algorithm

Matrix Multiplication: If A =(aij) and B = (bij) are square nxn matrices,
then in the product C= A *B, we define the entry c(ij) , for i,j =1,2,...n:

M
{.|II_.I|I. — E 'E'I'II. & & ;'-'lf:_lll

k=1

Basic Matrix Multiplication

fori=1ton
forj=1ton
fork=1ton
C(i,)) = C(i,)) + A(i,k) * B(k))

algorithm

Time analysis =l

Suppose we want to multiply two matrices of size
nxn: for example A* B = C.

| Cii Cis _ Ay Ap | By By

Ca Ca Ay Ay || By By
Ci=AuBy +ALBy

Cio=A;B, +ALBy,

Cop =AyBy +A,By

sz = A21Blz + Azszg 2x2 matrix multiplication can be

accomplished in 8 multiplication.(2'°9,8 =23)

e ifn =1,

T(n) =
) 8T (n/2) + O(n?) ifn > 1.

Strassen observed [1969] that the product of two
matrices can be computed in general as follows:

C11 12 All A12 Bll B12
= *
C,,'C,, Al A B, B

21 2 21 2

P. +P, -P,+ P P +P

P,+P P. +P -P,—-P,

3 4

P1 = A11 * (B12 - B22)

How much
P, = (Au + A,) * B,, s for
computing
P3 - (A21 +A22) *By, each _
parenthesis
P,= A,,*(B, —B,) (10 total):
O(n?)
P5 = (All + A22) g (Bll + B22)
P,=(A,-A,)*(B,, +B,) /7 multiplications

P7 = (An — A21) g (Bu + B12)

If n 1s not a power of 2, matrices can be padded with
ZETO0S.

s (1) ifn=1.

I'(n)= o
I TT(n/2) +On~) ifn>1.

Solution: T(n) = nl°¢27 = n2897 vs. n3of brute-force and
basic D&C alg.

(see next how to find running time easy)

Algorithms with better asymptotic efficiency are known but they are even
more complex and not used in practice.

Complete the missing statements at the end and then find the
tunction that describes the running time of this algorithm and
solve it (using O-notation). Use Divide and Conquer.

int maxValue(A, left, right)
if (left==right)
return Alleft]
mid=(left+right)/2
ansi=maxValue(left,mid)
ans2=maxValue(mid+1,right)

