
D I V I D E A N D C O N Q U E R

M E R G E S O R T & M A X I M U M S U B A R R AY & M A T R I X

M U LT I P L I C A T I O N

A D A P T E D F R O M

C S 1 4 6 S J S U (K AT E R I N A P O T I K A)

ALGORITHMS & ADVANCED

DATA STRUCTURES (#4)

Designing algorithms

2

◼ 1st Technique: Divide and conquer

◼ Divide the problem into a number of sub-problems.

◼ Conquer the sub-problems by solving them recursively.

◼ Base case: If the sub-problems are small enough, just solve them
by brute force.

◼ Combine the sub-problem solutions to give a solution to the
original problem

Mergesort

3

◼ Split the input into 2 parts.

◼ Recursively sort each of them.

◼ Merge the two sorted parts.

Mergesort – more details

4

◼ Each sub-problem as sorting a sub-array A[p . . r].

◼ Initially, p = 1 and r = n, but these values change as we recursively
solve sub-problems.

◼ To sort A[p . . r]:

◼ Divide by splitting into two sub-arrays

◼ A[p . . q]

◼ A[q + 1 . . r], where q is the halfway point of A[p . . r].

◼ Conquer by recursively sorting the two sub-arrays A[p . . q] and
A[q + 1 . . r].

◼ Combine by merging the two sorted sub-arrays A[p . . q] and A[q
+ 1 . . r] to produce a single sorted sub-array A[p . . r].

◼ MERGE(A, p, q, r) // basic “sort” operation

◼ The recursion ends when the sub-array has just 1 element, so that it’s
trivially sorted.

How do we merge?

5

◼ Input: 2 sorted sub-array A[p..q] and A[q+1..r]

◼ Output: A sorted sub-array A[p..r] which contains
all the elements.

◼ Merge(A,p,q,r)
◼ while there are still elements in the 2 sub-arrays do

◼ Compare the 1st elements of the sorted 2 sub-arrays.

◼ Move the minimum of them from its corresponding list to the
end of output sub-array.

MERGE-SORT(A, p, r)

6

if p < r // Check for base case

then q ← (p + r)/2 //Divide

MERGE-SORT(A, p, q) // Conquer

MERGE-SORT(A, q + 1, r) // Conquer

MERGE(A, p, q, r) // Combine

◼ Initial call: MERGE-SORT(A, 1, n)

Example with n=8

7

Example with n=11

8

Analysis of Merge Sort
9

Merge-Sort(A, p, r) //T(n)

if (p < r) //(1)

q = (𝒑 + 𝒓)/𝟐 //(1)

Merge-Sort(A, p, q); //T(n/2)

Merge-Sort(A, q+1, r); //T(n/2)

Merge(A, p, q, r); //(n)

Time analysis

10

◼ If the problem size is small, say c for some constant
c, we can solve the problem in constant, i.e., Θ(1)
time.

◼ Let T(n) be the time needed to sort for input of size
n.

◼ Let cn be the time needed to merge 2 lists of total
size n. We know that cn = Θ(n).

◼ Assume that the problem can be split into 2
subproblems in constant time and that c = 1.

Recurrences
11

 The expression:

 is a recurrence.

 Recurrence: an equation that describes a function in terms of its
value on smaller functions












+








=

=

1
2

2

1

)(

ncn
n

T

nc

nT

Recurrence Examples
12







=

+−
=

0

0

)1(

0
)(

n

n

cns
ns





+−

=
=

0)1(

00
)(

nnns

n
ns












+








=

=

1
2

2

1

)(

nc
n

T

nc

nT













+








=

=

1

1

)(

ncn
b

n
aT

nc

nT

How to we find T(n)

13

Recursion tree
14

 For the original problem, cost c*n+2 subproblems,
each of them c*n/2 + subproblems

15

Recursion tree

– cont.

Cost of each level
16

Total number of levels
17

Running time of Merge-sort
18

 lgn+1 levels each with cost cn➔ cn(lgn+1)

 Ignore lower order term and c

 Θ(nlgn)

Practice
19

merge sort on the array

3, 41, 52, 26, 38, 57, 9, 49

Maximum Subarray Problem
20

 Suppose you are a freelancer and that you plan to work at
a Mykonos resort for some part of the n-day summer
season next year.

 Unfortunately, there isn’t enough work for you to be paid
every day and you need to cover your own expenses (but
you want to go).

 Fortunately, you know in advance that if you are at the
resort on the ith day of the season, you’ll make pi euros
where pi could be negative (if expenses are more than
earnings) or positive (if expenses are less than earnings).



Maximum Subarray Problem Example
21

 To maximize your earning you should choose
carefully which day you arrive and which day you
leave; the days you work should be consecutive and
you don’t need to work all season. For example, if n =
8 and p1 = −9 , p2 = 10 , p3 = −8 , p4 = 10 , p5 = 5 , p6

= −4 , p7 = −2 , p8 = 5 then if you worked from day 2
to day 5, you would earn 10 − 8 + 10 + 5 = 17 euros in
total. Assume the resort pays your airtickets.

Brute force again

 Trivial if only positive numbers (assume not)

 Need to check O(n2) pairs

 For each pair, find the sum

 Thus total time is (see next)

22

Brute force O(n3)
23

 Calculate the value val(i,j) for each pair i<j and return max

FIND-MAXIMUM-SUBARRAY-BF1(A, 1, n)
max=A[1]
for i=1 to n

for j=i to n
val=0
for x=i to j

val=val+A[x]
if val>max

max=val
return max

A= [-2, -5, 6, -2, -3, 1, 5, -6] the

maximum subarray sum is 6-2-3+1+5

Can I do better?
24

 Save on one for loop?

Brute force O(n2) - Reuse
25

 Reuse previous values

FIND-MAXIMUM-SUBARRAY-BF2(A, 1, n)

max=A[1]

for i=1 to n

val=0

for j=i to n
val=val+A[j]

if val>max

max=val

return max A= [-2, -5, 6, -2, -3, 1, 5, -6] the

maximum subarray sum is 6-2-3+1+5

Divide-and-Conquer

 A[low..high]

 Divide in the middle:

 A[low,mid], A[mid+1,high]

 Any subarray A[i,..j] is

(1) Entirely in A[low,mid]

(2) Entirely in A[mid+1,high]

(3) In both

 (1) and (2) can be found recursively

26

Divide-and-Conquer (cont.)

 (3) find maximum subarray that crosses midpoint

 Need to find maximum subarrays of the form

A[i..mid], A[mid+1..j], low <= i, j <= high

 Take subarray with largest sum of (1), (2), (3)

27

Divide-and-Conquer (cont.)

Find-Max-Cross-Subarray(A,low,mid,high)
left-sum = -∞
sum = 0
for i = mid downto low

sum = sum + A[i]
if sum > left-sum then

left-sum = sum
max-left = i

right-sum = -∞
sum = 0
for j = mid+1 to high

sum = sum + A[j]
if sum > right-sum then

right-sum = sum
max-right = j

return (max-left, max-right, left-sum + right-sum)

28

A= [-2, -5, 6, -2, -3, 1, 5, -6] the

maximum subarray sum is 6-2-3+1

Maximum Subarray
29

FIND-MAXIMUM-SUBARRAY(A, low, high)

if high == low

return (low, high, A[low])/ // base case: only one element

else

mid =(low + high)/2

(left-low, left-high, left-sum)=FIND-MAXIMUM-SUBARRAY(A, low, mid)

(right-low, right-high, right-sum)=FIND-MAXIMUM-SUBARRAY(A, mid + 1, high)

(cross-low, cross-high, cross-sum)=FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high)

if left-sum >= right-sum and left-sum >= cross-sum

return (left-low, left-high, left-sum)

elseif right-sum >= left-sum and right-sum >= cross-sum

return (right-low, right-high, right-sum)

else

return (cross-low, cross-high, cross-sum)

Time analysis

 Find-Max-Cross-Subarray: O(n) time

 Two recursive calls on input size n/2

 Thus:

T(n) = 2T(n/2) + O(n)

T(n) = O(n log n)

30

Matrix Multiplication (Strassen’s Algorithm)

 Another Divide and Conquer Algorithm

 Matrix Multiplication: If A =(aij) and B = (bij) are square nxn matrices,
then in the product C= A *B, we define the entry c(ij) , for i,j =1,2,…n:

= *

C(i,j) A(i,:)

B(:,j)

31

Basic Matrix Multiplication

)()(Thus 3

1 1

3

1

,

1

,,

nOcncNT

baC

n

i

n

j

n

k

jk

n

k

kiji

===

=





= = =

=

for i = 1 to n

for j = 1 to n

for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j) algorithm

Time analysis

32

Basic Divide and Conquer Matrix Multiplication

Suppose we want to multiply two matrices of size

nxn: for example A * B = C.

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22 2x2 matrix multiplication can be

accomplished in 8 multiplication.(2log
2
8 =23)

33

Recurrence for the running time of the basic D&C
algorithm

 Why?

34

Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two
matrices can be computed in general as follows:

C11 C12 A11 A12 B11 B12

= *

C21 C22 A21 A22 B21 B22

P5 + P4 - P2 + P6 P1 + P2

=

P3 + P4 P5 + P1 - P3 – P7

35

Formulas for Strassen’s Algorithm

P1 = A11 * (B12 - B22)

P2 = (A11 + A12)  B22

P3 = (A21 +A22) B11

P4 = A22  (B21 – B11)

P5 = (A11 + A22)  (B11 + B22)

P6 = (A12 – A22)  (B21 + B22)

P7 = (A11 – A21)  (B11 + B12)

How much

time for

computing

each

parenthesis

(10 total):

Θ(n2)

36

7 multiplications

18 additions

Analysis of Strassen’s Algorithm

If n is not a power of 2, matrices can be padded with
zeros.

Solution: T(n) = nlog 27 ≈ n2.807 vs. n3 of brute-force and
basic D&C alg.

(see next how to find running time easy)

Algorithms with better asymptotic efficiency are known but they are even
more complex and not used in practice.

What if we count both

multiplications and additions?

37

Practice: Find the maximum element of an array

39

 Complete the missing statements at the end and then find the
function that describes the running time of this algorithm and
solve it (using O-notation). Use Divide and Conquer.

int maxValue(A, left, right)
if (left==right)

return A[left]
mid=(left+right)/2
ans1=maxValue(left,mid)
ans2=maxValue(mid+1,right)

