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A heap can be seen as a complete binary tree:

“nearly complete” binary trees: you can think of unfilled slots as
null pointers



In practice, heaps are usually implemented as arrays:
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eaps

To represent a complete binary tree as an array:

The root node is A[1]

Node 1 i1s A[i]
The parent of node 1 1s A[1/2] (note: integer divide)

The left child of node 1 is A[2i]

The right child of node 1 i1s A[2I + 1]
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Referencing Heap Elements




The Heap Property

Heaps also satisfy the heap property:
Alparent(i)] > A[i] forall nodesi>1
l.e. , the value of a node is at most the value of its parent

In case of Max Heap
Where is the largest element in a heap stored?

- The height of a node in the tree = the number of edges on
the longest downward path to a leaf

The height of a tree = the height of its root




Self test




What is the height of an n-element heap?

This is nice property: all basic heap operations take at most
time proportional to the height of the heap!



eap Operations: Heapify()

Heapify(): maintain the heap property
Input: a node I in the heap with children | and r

& two subtrees rooted at | and r, assumed to be heaps

The subtree rooted at 1 may violate the heap property (Give an
example...)

- QOutput: the tree rooted at 1 I1s a heap

Action: let the value of the parent node “float down™ so subtree at I
satisfies the heap property
What basic operation between i, |, and r must be used?




Heapify (A, 1)

1l = Left (1)

r = Right (i)

if (1 <= A.heap size && A[l] > A[1])
largest = 1

else largest = i

if (r <= A.heap size && A[r] > A[largest])
largest = r

if (largest !'= 1)
Swap (A, i, largest);
Heapify (A, largest);



Heapify() Example
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Analyzing Heapify()

Except the recursive call, what is the running time of
Heapify()?
How many times can Heapify() recursively call itself?

What is the worst-case running time of Heapify() on a heap
of size n?




Fixing up relationships between 1, |, and r takes ®(1) time

If the heap at 1 has n elements, how many elements can the
subtrees at | or r have?

Draw it
Answer: 2n/3 (worst case: bottom row 1/2 full)

So time taken by Heapify() is given by
T(n) <T(2n/3) + ©(1)



So we have

T(n) <=T(2n/3) + B(1)

By case 2 of the Master Theorem,
T(n) = O(lg n)

Thus, Heapify() takes logarthmic time



We can build a heap in a bottom-up manner by running
Heapify() on successive subarrays

Fact: for array of length n, all elements in range
Alln/2] + 1 ..n] are heaps (Why is that?)

Key idea:
Walk backwards through the array from n/2 to 1, calling
Heapify() on each node.

Order of processing guarantees that the children of node 1 are
heaps when I Is processed



// given an unsorted array A, make A a heap
BuildHeap (A)
{

A.heap size = A.length;

for (i = |_A.length/2J downto 1)

Heapify (A, 1i);



Work through example
A={4,1,3,2,16,9,10, 14, 8, 7}




Each call to Heapify() takes O(log n) time
There are O(n) such calls (| n/2.)

Thus the running time is O(n log n)
Is this a correct asymptotic upper bound?
Is this an asymptotically tight bound?

Can we do better?

A tighter bound is O(n)

Is there a flaw in the above reasoning? No more careful analysis



To Heapify () a subtree takes O(h) time where h is
the height of the subtree
h = O(Ig m), m = # nodes in subtree

The height of most subtrees is small

Fact: an n-element heap has at most| n/2"+ | nodes of
height h

Uses this fact to prove that BuildHeap () takes O(n)
time



BuildHeap() is O(n)!




Self Test




eapsort!

Given BuildHeap(), an in-place sorting algorithm is easily
constructed, key Idea:

- Maximum element is at A[1]
- Discard by swapping with element at A[n]
Decrement heap_size[A]
A[n] now contains correct value
- Restore heap property at A[1] by calling Heapify()
- Repeat, always swapping A[1] for A[heap size(A)]




Heapsort (A)
BuildHeap (3) ;
for (1 = A.length downto 2)
Swap (A[1], A[i]);
A.heap size(A) -= 1;
Heapify (A, 1);






The call to BuildHeap() takes O(n) time

Each of the n - 1 calls to Heapify() takes O(log n) time
Thus the total time taken by HeapSort()

=0O(n) +(n-1) O(lg n)

=0O(n) + O(n Ig n)

=0O(nlgn)



Heapsort is a nice algorithm, but in practice Quicksort
(coming up) usually wins

But the heap data structure is incredibly useful for
Implementing priority queues

A data structure for maintaining a set S of elements, each with an
assoclated value or key

Supports the operations Insert(), Maximum(), and ExtractMax()
What might a priority queue be useful for?



Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the maximum
key

ExtractMax(S) removes and returns the element of S with
the maximum key

How could we implement these operations using a heap?
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HeapMaximum (A)
Return A[1l]

HeapExtractMax (A)
{

if (A.heap size < 1) { error }
max = A[l]

A[l] = A[A.heap size]

A.heap size --

Heapify (A, 1)

return max



HeapEXxtractMax




IncreaseKey(A,i,key)
{

If key<A[l] error “new key is smaller than current”
All]=key
while (i>1 && Alparent(i)]<A[i])
swap(A[i],A[parent(i)])
I=parent(i)

}



IncreaseKey complexity




example




Insert (A, key)

{
A.heap size++

A[A.heap size]=-infinity
IncreaseKey (A,A.heap size, key)

O(lgn) complexity



