
H E A P S - H E A P S O RT

A D A P T E D F R O M

C S 1 4 6 S J S U (K AT E R I N A P O T I K A)

ALGORITHMS & ADVANCED

DATA STRUCTURES (#5)

Heaps (chapter 6)

2

A heap can be seen as a complete binary tree:

“nearly complete” binary trees: you can think of unfilled slots as

null pointers

16

14 10

8 7 9 3

2 4 1 1 1 111

Heaps

3

In practice, heaps are usually implemented as arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

1 2 3 4 5 6 7 8 9 10

Heaps

4

To represent a complete binary tree as an array:

The root node is A[1]

Node i is A[i]

The parent of node i is A[i/2] (note: integer divide)

The left child of node i is A[2i]

The right child of node i is A[2i + 1]

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

1 2 3 4 5 6 7 8 9 10

Referencing Heap Elements

5

So…

parent(i) { return i/2; }

left(i) { return 2*i; }

right(i) { return 2*i + 1; }

How would you implement this

most efficiently?

The Heap Property

6

Heaps also satisfy the heap property:

A[parent(i)]  A[i] for all nodes i > 1

i.e. , the value of a node is at most the value of its parent

In case of Max Heap

Where is the largest element in a heap stored?

• The height of a node in the tree = the number of edges on
the longest downward path to a leaf

• The height of a tree = the height of its root

Self test
7

 Is the array with values 23; 17; 14; 6; 13; 10; 1; 5; 7;
12 a max-heap?

Heap Height

8

What is the height of an n-element heap?

This is nice property: all basic heap operations take at most

time proportional to the height of the heap!

Heap Operations: Heapify()

9

Heapify(): maintain the heap property

• Input: a node i in the heap with children l and r

& two subtrees rooted at l and r, assumed to be heaps

The subtree rooted at i may violate the heap property (Give an

example…)

• Output: the tree rooted at i is a heap

Action: let the value of the parent node “float down” so subtree at i

satisfies the heap property

• What basic operation between i, l, and r must be used?

Heap Operations: Heapify()

10

Heapify(A, i)

l = Left(i)

r = Right(i)

if (l <= A.heap_size && A[l] > A[i])

largest = l

else largest = i

if (r <= A.heap_size && A[r] > A[largest])

largest = r

if (largest != i)

Swap(A, i, largest);

Heapify(A, largest);

Heapify() Example

11

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1A =

1 2 3 4 5 6 7 8 9 10

Heapify() Example

12

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1A = 4

1 2 3 4 5 6 7 8 9 10

Heapify() Example

13

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A = 4 14

1 2 3 4 5 6 7 8 9 10

Heapify() Example

14

16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1A =

1 2 3 4 5 6 7 8 9 10

Heapify() Example

15

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1A = 4

1 2 3 4 5 6 7 8 9 10

Heapify() Example

16

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1A = 4 8

1 2 3 4 5 6 7 8 9 10

Heapify() Example

17

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

1 2 3 4 5 6 7 8 9 10

Heapify() Example

18

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1A = 4

1 2 3 4 5 6 7 8 9 10

Heapify() Example

19

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

1 2 3 4 5 6 7 8 9 10

Analyzing Heapify()

20

Except the recursive call, what is the running time of

Heapify()?

How many times can Heapify() recursively call itself?

What is the worst-case running time of Heapify() on a heap

of size n?

Analyzing Heapify(): Formal

21

Fixing up relationships between i, l, and r takes Θ(1) time

If the heap at i has n elements, how many elements can the

subtrees at l or r have?

Draw it

Answer: 2n/3 (worst case: bottom row 1/2 full)

So time taken by Heapify() is given by

T(n)  T(2n/3) + (1)

Analyzing Heapify(): Formal

22

So we have

T(n) <= T(2n/3) + Θ(1)

By case 2 of the Master Theorem,

T(n) = O(lg n)

Thus, Heapify() takes logarthmic time

Heap Operations: BuildHeap()

23

We can build a heap in a bottom-up manner by running

Heapify() on successive subarrays

Fact: for array of length n, all elements in range
A[n/2 + 1 .. n] are heaps (Why is that?)

Key idea:

• Walk backwards through the array from n/2 to 1, calling

Heapify() on each node.

• Order of processing guarantees that the children of node i are

heaps when i is processed

BuildHeap()

24

// given an unsorted array A, make A a heap

BuildHeap(A)

{

A.heap_size = A.length;

for (i = A.length/2 downto 1)

Heapify(A, i);

}

BuildHeap() Example

25

Work through example
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

Analyzing BuildHeap()

26

Each call to Heapify() takes O(log n) time

There are O(n) such calls (n/2)

Thus the running time is O(n log n)

Is this a correct asymptotic upper bound?

Is this an asymptotically tight bound?

Can we do better?

A tighter bound is O(n)

Is there a flaw in the above reasoning? No more careful analysis

Analyzing BuildHeap(): Tight

27

To Heapify() a subtree takes O(h) time where h is

the height of the subtree

h = O(lg m), m = # nodes in subtree

The height of most subtrees is small

Fact: an n-element heap has at most n/2h+1 nodes of
height h

Uses this fact to prove that BuildHeap() takes O(n)

time

BuildHeap() is O(n)!
28

 Due X=1/2 it is
(see A.8 textbook)

Self Test
29

 illustrate the operation of BUILD-MAX-HEAP on the
array 5; 3; 17; 10; 84; 19; 6; 22; 9.

Heapsort!

30

Given BuildHeap(), an in-place sorting algorithm is easily

constructed, key idea:

• Maximum element is at A[1]

• Discard by swapping with element at A[n]

• Decrement heap_size[A]

• A[n] now contains correct value

• Restore heap property at A[1] by calling Heapify()

• Repeat, always swapping A[1] for A[heap_size(A)]

Heapsort

31

Heapsort(A)

BuildHeap(A);

for (i = A.length downto 2)

Swap(A[1], A[i]);

A.heap_size(A) -= 1;

Heapify(A, 1);

Example
32

 21, 14, 16, 12, 10, 4, 8

 HeapSort using min heap

Analyzing Heapsort

33

The call to BuildHeap() takes O(n) time

Each of the n - 1 calls to Heapify() takes O(log n) time

Thus the total time taken by HeapSort()

= O(n) + (n - 1) O(lg n)

= O(n) + O(n lg n)

= O(n lg n)

Priority Queues

34

Heapsort is a nice algorithm, but in practice Quicksort

(coming up) usually wins

But the heap data structure is incredibly useful for

implementing priority queues

A data structure for maintaining a set S of elements, each with an

associated value or key

Supports the operations Insert(), Maximum(), and ExtractMax()

What might a priority queue be useful for?

Priority Queue Operations

35

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the maximum

key

ExtractMax(S) removes and returns the element of S with

the maximum key

How could we implement these operations using a heap?

Priority Queues

36

Heapsort is a nice algorithm, but in practice Quicksort

(coming up) usually wins

But the heap data structure is incredibly useful for

implementing priority queues

A data structure for maintaining a set S of elements, each with an

associated value or key

Supports the operations Insert(), Maximum(), and ExtractMax()

What might a priority queue be useful for?

Priority Queue Operations

37

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the maximum

key

ExtractMax(S) removes and returns the element of S with

the maximum key

How could we implement these operations using a heap?

Maximum and ExtractMaximum

38

HeapMaximum(A)

Return A[1]

HeapExtractMax(A)

{

if (A.heap_size < 1) { error }

max = A[1]

A[1] = A[A.heap_size]

A.heap_size --

Heapify(A, 1)

return max

}

HeapExtractMax

39

O(lgn) (same as Heapify)

IncreaseKey

40

IncreaseKey(A,i,key)

{

if key<A[i] error “new key is smaller than current”

A[i]=key

while (i>1 && A[parent(i)]<A[i])

swap(A[i],A[parent(i)])

i=parent(i)

}

IncreaseKey complexity

41

O(lgn) why?

example
42

Insert

43

Insert(A,key)

{

A.heap_size++

A[A.heap_size]=-infinity

IncreaseKey(A,A.heap_size, key)

}

O(lgn) complexity

