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Heaps (chapter 6)

2

A heap can be seen as a complete binary tree:

“nearly complete” binary trees: you can think of unfilled slots as 

null pointers
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Heaps
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In practice, heaps are usually implemented as arrays:
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Heaps
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To represent a complete binary tree as an array: 

The root node is A[1]

Node i is A[i]

The parent of node i is A[i/2] (note: integer divide)

The left child of node i is A[2i]

The right child of node i is A[2i + 1]
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Referencing Heap Elements
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So…

parent(i) { return i/2; }

left(i) { return 2*i; }

right(i) { return 2*i + 1; }

How would you implement this 

most efficiently?



The Heap Property
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Heaps also satisfy the heap property:

A[parent(i)]  A[i] for all nodes i > 1

i.e. , the value of a node is at most the value of its parent

In case of Max Heap 

Where is the largest element in a heap stored?

• The height of a node in the tree = the number of edges on 
the longest downward path to a leaf 

• The height of a tree = the height of its root



Self test
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 Is the array with values 23; 17; 14; 6; 13; 10; 1; 5; 7; 
12 a max-heap?



Heap Height
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What is the height of an n-element heap? 

This is nice property: all basic heap operations take at most 

time proportional to the height of the heap!



Heap Operations: Heapify()
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Heapify(): maintain the heap property

• Input: a node i in the heap with children l and r

& two subtrees rooted at l and r, assumed to be heaps

The subtree rooted at i may violate the heap property (Give an 

example…)

• Output: the tree rooted at i is a heap

Action: let the value of the parent node “float down” so subtree at i

satisfies the heap property 

• What basic operation between i, l, and r must be used?



Heap Operations: Heapify()
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Heapify(A, i)

l = Left(i)

r = Right(i)

if (l <= A.heap_size && A[l] > A[i]) 

largest = l

else largest = i

if (r <= A.heap_size && A[r] > A[largest])

largest = r

if (largest != i) 

Swap(A, i, largest);

Heapify(A, largest);



Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example
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Heapify() Example
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Analyzing Heapify()
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Except the recursive call, what is the running time of 

Heapify()?

How many times can Heapify() recursively call itself?

What is the worst-case running time of Heapify() on a heap 

of size n?



Analyzing Heapify(): Formal
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Fixing up relationships between i, l, and r takes Θ(1) time

If the heap at i has n elements, how many elements can the 

subtrees at l or r have? 

Draw it

Answer: 2n/3 (worst case: bottom row 1/2 full)

So time taken by Heapify() is given by

T(n)  T(2n/3) + (1) 



Analyzing Heapify(): Formal
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So we have 

T(n) <= T(2n/3) + Θ(1) 

By case 2 of the Master Theorem,

T(n) = O(lg n)

Thus, Heapify() takes logarthmic time



Heap Operations: BuildHeap()
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We can build a heap in a bottom-up manner by running 

Heapify() on successive subarrays

Fact: for array of length n, all elements in range 
A[n/2 + 1 .. n] are heaps (Why is that?)

Key idea: 

• Walk backwards through the array from n/2 to 1, calling 

Heapify() on each node.

• Order of processing guarantees that the children of node i are 

heaps when i is processed



BuildHeap()
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// given an unsorted array A, make A a heap

BuildHeap(A)

{

A.heap_size = A.length;

for (i = A.length/2 downto 1)

Heapify(A, i);

}



BuildHeap() Example
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Work through example
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}
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Analyzing BuildHeap()
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Each call to Heapify() takes O(log n) time

There are O(n) such calls ( n/2)

Thus the running time is O(n log n)

Is this a correct asymptotic upper bound?

Is this an asymptotically tight bound?

Can we do better?

A tighter bound is O(n) 

Is there a flaw in the above reasoning?  No more careful analysis



Analyzing BuildHeap(): Tight

27

To Heapify() a subtree takes O(h) time where h is 

the height of the subtree

h = O(lg m), m = # nodes in subtree

The height of most subtrees is small

Fact: an n-element heap has at most n/2h+1 nodes of 
height h

Uses this fact to prove that BuildHeap() takes O(n) 

time 



BuildHeap() is O(n)!
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 Due X=1/2 it is
(see A.8 textbook)



Self Test
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 illustrate the operation of BUILD-MAX-HEAP on the 
array 5; 3; 17; 10; 84; 19; 6; 22; 9.



Heapsort!

30

Given BuildHeap(),  an in-place sorting algorithm is easily 

constructed, key idea:

• Maximum element is at A[1]

• Discard by swapping with element at A[n]

• Decrement heap_size[A]

• A[n] now contains correct value

• Restore heap property at A[1] by calling Heapify()

• Repeat, always swapping A[1] for A[heap_size(A)]



Heapsort
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Heapsort(A)

BuildHeap(A);

for (i = A.length downto 2)

Swap(A[1], A[i]);

A.heap_size(A) -= 1;

Heapify(A, 1);



Example
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 21, 14, 16, 12, 10, 4, 8

 HeapSort using min heap



Analyzing Heapsort
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The call to BuildHeap() takes O(n) time 

Each of the n - 1 calls to Heapify() takes O(log n) time

Thus the total time taken by HeapSort()

= O(n) + (n - 1) O(lg n)

= O(n) + O(n lg n)

= O(n lg n)



Priority Queues
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Heapsort is a nice algorithm, but in practice Quicksort 

(coming up) usually wins

But the heap data structure is incredibly useful for 

implementing priority queues

A data structure for maintaining a set S of elements, each with an 

associated value or key

Supports the operations Insert(), Maximum(), and ExtractMax()

What might a priority queue be useful for?



Priority Queue Operations
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Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the maximum 

key

ExtractMax(S) removes and returns the element of S with 

the maximum key

How could we implement these operations using a heap?



Priority Queues
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Heapsort is a nice algorithm, but in practice Quicksort 

(coming up) usually wins

But the heap data structure is incredibly useful for 

implementing priority queues

A data structure for maintaining a set S of elements, each with an 

associated value or key

Supports the operations Insert(), Maximum(), and ExtractMax()

What might a priority queue be useful for?



Priority Queue Operations
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Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the maximum 

key

ExtractMax(S) removes and returns the element of S with 

the maximum key

How could we implement these operations using a heap?



Maximum and ExtractMaximum
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HeapMaximum(A)

Return A[1]

HeapExtractMax(A)

{

if (A.heap_size < 1) { error }

max = A[1]

A[1] = A[A.heap_size]

A.heap_size --

Heapify(A, 1)

return max

}



HeapExtractMax
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O(lgn) (same as Heapify)



IncreaseKey
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IncreaseKey(A,i,key)

{

if key<A[i] error “new key is smaller than current”

A[i]=key

while (i>1 && A[parent(i)]<A[i])

swap(A[i],A[parent(i)])

i=parent(i)

}



IncreaseKey complexity
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O(lgn) why?



example
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Insert
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Insert(A,key)

{

A.heap_size++

A[A.heap_size]=-infinity

IncreaseKey(A,A.heap_size, key)

}

O(lgn) complexity


