ALGORITHMS & ADVANCED
DATA STRUCTURES (#5)

O

A heap can be seen as a complete binary tree:

“nearly complete” binary trees: you can think of unfilled slots as
null pointers

In practice, heaps are usually implemented as arrays:

1.2 3 4 5 6 7 8 9 10
A= 11611411018 719|312]|4]|1]|=

eaps

To represent a complete binary tree as an array:

The root node is A[1]

Node 1 i1s A[i]
The parent of node 1 1s A[1/2] (note: integer divide)

The left child of node 1 is A[2i]

The right child of node 1 i1s A[2I + 1]

14

10

Referencing Heap Elements

The Heap Property

Heaps also satisfy the heap property:
Alparent(i)] > A[i] forall nodesi>1
l.e. , the value of a node is at most the value of its parent

In case of Max Heap
Where is the largest element in a heap stored?

- The height of a node in the tree = the number of edges on
the longest downward path to a leaf

The height of a tree = the height of its root

Self test

What is the height of an n-element heap?

This is nice property: all basic heap operations take at most
time proportional to the height of the heap!

eap Operations: Heapify()

Heapify(): maintain the heap property
Input: a node I in the heap with children | and r

& two subtrees rooted at | and r, assumed to be heaps

The subtree rooted at 1 may violate the heap property (Give an
example...)

- QOutput: the tree rooted at 1 I1s a heap

Action: let the value of the parent node “float down™ so subtree at I
satisfies the heap property
What basic operation between i, |, and r must be used?

Heapify (A, 1)

1l = Left (1)

r = Right (i)

if (1 <= A.heap size && A[l] > A[1])
largest = 1

else largest = i

if (r <= A.heap size && A[r] > A[largest])
largest = r

if (largest !'= 1)
Swap (A, i, largest);
Heapify (A, largest);

Heapify() Example

Heapify() Example

Heapify() Example

12345678910
6]« Jrojuaf7]o]3]2]8]1

Heapify() Example

Heapify() Example

Heapify() Example

Heapify() Example

Heapify() Example

Heapify() Example

Analyzing Heapify()

Except the recursive call, what is the running time of
Heapify()?
How many times can Heapify() recursively call itself?

What is the worst-case running time of Heapify() on a heap
of size n?

Fixing up relationships between 1, |, and r takes ®(1) time

If the heap at 1 has n elements, how many elements can the
subtrees at | or r have?

Draw it
Answer: 2n/3 (worst case: bottom row 1/2 full)

So time taken by Heapify() is given by
T(n) <T(2n/3) + ©(1)

So we have

T(n) <=T(2n/3) + B(1)

By case 2 of the Master Theorem,
T(n) = O(lg n)

Thus, Heapify() takes logarthmic time

We can build a heap in a bottom-up manner by running
Heapify() on successive subarrays

Fact: for array of length n, all elements in range
Alln/2] + 1 ..n] are heaps (Why is that?)

Key idea:
Walk backwards through the array from n/2 to 1, calling
Heapify() on each node.

Order of processing guarantees that the children of node 1 are
heaps when I Is processed

// given an unsorted array A, make A a heap
BuildHeap (A)
{

A.heap size = A.length;

for (i = |_A.length/2J downto 1)

Heapify (A, 1i);

Work through example
A={4,1,3,2,16,9,10, 14, 8, 7}

Each call to Heapify() takes O(log n) time
There are O(n) such calls (| n/2.)

Thus the running time is O(n log n)
Is this a correct asymptotic upper bound?
Is this an asymptotically tight bound?

Can we do better?

A tighter bound is O(n)

Is there a flaw in the above reasoning? No more careful analysis

To Heapify () a subtree takes O(h) time where h is
the height of the subtree
h = O(Ig m), m = # nodes in subtree

The height of most subtrees is small

Fact: an n-element heap has at most| n/2"+ | nodes of
height h

Uses this fact to prove that BuildHeap () takes O(n)
time

BuildHeap() is O(n)!

Self Test

eapsort!

Given BuildHeap(), an in-place sorting algorithm is easily
constructed, key Idea:

- Maximum element is at A[1]
- Discard by swapping with element at A[n]
Decrement heap_size[A]
A[n] now contains correct value
- Restore heap property at A[1] by calling Heapify()
- Repeat, always swapping A[1] for A[heap size(A)]

Heapsort (A)
BuildHeap (3) ;
for (1 = A.length downto 2)
Swap (A[1], A[i]);
A.heap size(A) -= 1;
Heapify (A, 1);

The call to BuildHeap() takes O(n) time

Each of the n - 1 calls to Heapify() takes O(log n) time
Thus the total time taken by HeapSort()

=0O(n) +(n-1) O(lg n)

=0O(n) + O(n Ig n)

=0O(nlgn)

Heapsort is a nice algorithm, but in practice Quicksort
(coming up) usually wins

But the heap data structure is incredibly useful for
Implementing priority queues

A data structure for maintaining a set S of elements, each with an
assoclated value or key

Supports the operations Insert(), Maximum(), and ExtractMax()
What might a priority queue be useful for?

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the maximum
key

ExtractMax(S) removes and returns the element of S with
the maximum key

How could we implement these operations using a heap?

Heapsort is a nice algorithm, but in practice Quicksort
(coming up) usually wins

But the heap data structure is incredibly useful for
Implementing priority queues

A data structure for maintaining a set S of elements, each with an
assoclated value or key

Supports the operations Insert(), Maximum(), and ExtractMax()
What might a priority queue be useful for?

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with the maximum
key

ExtractMax(S) removes and returns the element of S with
the maximum key

How could we implement these operations using a heap?

HeapMaximum (A)
Return A[1l]

HeapExtractMax (A)
{

if (A.heap size < 1) { error }
max = A[l]

A[l] = A[A.heap size]

A.heap size --

Heapify (A, 1)

return max

HeapEXxtractMax

IncreaseKey(A,i,key)
{

If key<A[l] error “new key is smaller than current”
All]=key
while (i>1 && Alparent(i)]<A[i])
swap(A[i],A[parent(i)])
I=parent(i)

}

IncreaseKey complexity

example

Insert (A, key)

{
A.heap size++

A[A.heap size]=-infinity
IncreaseKey (A,A.heap size, key)

O(lgn) complexity

