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Shortest path in a DAG

Linearization of a DAG
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Longest increasing subsequence problem

Implicit DAG
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Edit distance problem

• A natural measure of the 
distance between two strings is 
the extent to which they can be 
aligned, or matched up.

• Example: SNOWY vs SUNNY

• A dynamic programming 
solution
• x[1..m] is the first substring

• y[1..n] is the second substring

• Subproblem E(i,j): find the edit 
distance between a prefix of the 
first substring x[1..i] and a prefix 
of the second substring y[1..j]

E(7,5)
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Express subproblem in terms of smaller 
subproblems
• Problem E(i,j)

• Find the best alignment between 
x[1..i] and y[1..j]

• The rightmost column can only 
be one of three things:

+1 cost
remains to align 
x[1..i-1] and y[1..j]

+1 cost
remains to align 
x[1..i] and y[1..j-1]

+1 cost if x[i]≠y[j]
remains to align x[1..i-1]
and y[1..j-1]

EXPONENTIAL vs POLYNOMIAL
E(4,3) refers to EXPO vs POL
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Table of subproblems

The final table of values found by dynamic programmingThe table of subproblems
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Algorithm and the base cases

• Base cases:
• E(i,0) is the edit distance between the 

0-length prefix of y (the empty string) 
and the first letters of i➔ E(i,0)=i

• Similarly E(0,j)=j

• The procedure fills in the table row 
by row, and left to right within each 
row

• Each entry takes constant time to 
fill in, so the overall running time is 
just the size of the table, O(mn)Edit distance = 6
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The underlying DAG

• Edges: 
• (i-1,j)→(i,j)
• (i,j-1)→(i,j)
• (i-1,j-1)→(i,j)

• Set all edge lengths to 1, except 
for: 

{(i-1,j-1)→(i,j): x[i]=y[j]}
shown dotted in the figure

• Each move: 
• down → deletion
• right → insertion
• diagonal →match or substitution
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Knapsack problem

• During a robbery, a burglar finds 
much more loot than he had 
expected and has to decide what to 
take

• His bag (or “knapsack”) will hold a 
total weight of at most W

• There are n items to pick from, of 
weight w1,…,wn and dollar value 
v1,…, vn

• What's the most valuable 
combination of items he can fit 
into his bag?
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Subproblem definition + DP algorithm

• K(w,j): maximum value 
achievable using a knapsack of 
capacity w and items 1,…,j

• The answer we seek is K(W,n)

• We can express K(w,j) in terms 
of problems K(.,j-1) 

either item j is needed to achieve the optimal value, or it isn’t needed 
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Shortest reliable paths

• Find the shortest path from s to t that 
uses at most k edges

• In dynamic programming, the trick is 
to choose subproblems so that all vital 
information is remembered and 
carried forward

• Define for each vertex v and each integer 
i≤k, dist(v,i) to be the length of the 
shortest path from s to v that uses i edges

• The starting values dist(v,0) are ∞ for all 
vertices except s, for which it is 0 
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All-pairs shortest paths

• We want to find the shortest path 
between all pairs of vertices

• Approach 1: execute |V| times the 
shortest path algorithm, once for 
each starting node, O(|V|2E)

• Approach 2: Dynamic 
Programming, Floyd-Warshall
algorithm, O(|V|3)

• When no intermediate nodes are 
allowed, the shortest path from u 
to v is simply the direct edge (u,v), 
if it exists

• We expand the set of permissible 
intermediate nodes (one node at a 
time), updating the shortest path 
lengths at each step

• Eventually this set grows to all of V, 
at which point all vertices are 
allowed to be on all paths, and we 
have found the true shortest paths 
between vertices of the graph
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All-pairs shortest paths subproblems

• Number the vertices in V as 
{1,2,…,n}

• dist(i,j,k): length of the shortest 
path from node i to node j in 
which only nodes {1,2,…,k} can 
be used as intermediates

• dist(i,j,0)=length of the edge 
between i and j if it exists, ∞ 
otherwise

• Expand the intermediate set to 
include an extra node:
• reexamine all pairs i,j and check whether 

using k as an intermediate point gives us 
a shorter path from i to j
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Floyd-Warshall algorithm
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Sources

• Algorithms. S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, 2006
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