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Abstract

This paper studies the e.ciency and robustness of some recent and well known population set-based direct
search global optimization methods such as Controlled Random Search, Di4erential Evolution and the Genetic
Algorithm. Some modi(cations are made to Di4erential Evolution and to the Genetic Algorithm to improve
their e.ciency and robustness. All methods are tested on two sets of test problems, one composed of easy
but commonly used problems and the other of a number of relatively di.cult problems.
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1. Introduction

Direct search methods [1] are widely used in applied science and in engineering. They are a class
of optimization methods which are easy to program, do not require any properties of the function
f(x), x ∈� ⊂ Rn (� is assumed to be de(ned by specifying upper and lower limits of the domain of
each variable), being optimized and are often claimed to be robust for problems with noisy function
values. Hence, when the optimizing function is nonlinear, non-di4erentiable and non-smooth, direct
search methods are the methods of choice. Over the years, several direct search methods for solving
the global optimization problems for continuous variables x have been proposed. These are based on
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global exploration (search of �) and localization of search. Some well-known direct search methods
are the Downhill Simplex (DS) method of Nelder and Mead [2], the method of Hooke and Jeeves
[3]. These methods are really local optimization methods and are usually used in a repeated fashion
from random starting points when used on multi-modal problems. These methods have been used in
many industrial and scienti(c applications, particularly by the engineering community.

A di4erent strategy to solve multi-modal problems is used by population set-based methods. Here
a set S of initial samples in � is successively transformed into samples concentrated on the global
minimum. The basic population set-based methods can be described as follows:

• generate the initial set S randomly in �;
• iteratively replace points in S with better points;
• stop when some stopping condition is met.

One of the population set-based direct search methods is the Controlled Random Search (CRS)
algorithm of Price [4,5]. Although this method proved very robust in many applications [6,7], it is
somewhat less known to the engineering community. Another popular population set-based algorithm
is the genetic algorithm (GA) [8]. Most recently, Storn and Price [9] proposed a new population
set-based direct search method, the di4erential evolution (DE) Method.

The objective of this paper is to describe the three population set-based methods using the same
general algorithm and in this way show the similarity of them and how they di4er from each other.
Further, we will investigate the improvement in e.ciency and robustness of modi(cations to DE
and to GA.

To this end, (rst the robustness and e.ciency of these direct search techniques, their strengths
and weaknesses, are thoroughly investigated by their implementation on classes of test problems,
classi(ed as easy, moderately di.cult and hard problems [10]. Second, we propose modi(cations to
DE [9] and to GA [11,12] to improve their robustness.

In Section 2 we brieJy describe all CRS, GA and DE algorithms. Following the descriptions, we
introduce our proposed modi(cations to GA and DE in the respective subsections of Section 2. The
test problems considered for comparison purpose are brieJy discussed in Section 3. Numerical results
and comparisons are made in Section 4. Section 5 contains a discussion and conclusions based on the
results obtained by di4erent algorithms. Similarities and dis-similarities of all population set-based
methods are presented in Appendix A. A set B of test problems are given in Appendix B.

2. Three classes of population set-based algorithms

All population set-based direct search methods use a population set S. The initial S consists of N
points with corresponding function values. A contraction process is then used to drive these points to
the vicinity of the global minimizer. Di4erent population set-based method uses di4erent strategies
in the contraction process, per generation. For instance, the CRS algorithm makes use of simplexes
for generating alternatives to replace a single sample (worst point) in the set S. In GA a subset of S
is successively selected for which mutations and crossovers are used to generate m1 new samples to
replace m1 old samples (bad points) of S. Unlike CRS which attempts to replace a single point in S
per generation, and GA which replaces m1 points (parents) of S by the new m1 points (children) per



M.M. Ali, A. T.orn / Computers & Operations Research 31 (2004) 1703–1725 1705

generation, DE attempts to replace all points in S by new points at each generation. Here, mutation
and crossover are used to generate trial points. A point-to-point comparison is then made and better
trial points are accepted.

2.1. CRS algorithms

Several versions of the CRS algorithm can be found in the literature; these are various modi(ca-
tions made to the original controlled random search (CRS1) algorithm. The (rst two improvements
(CRS2 and CRS3) [13,14] was proposed by Price himself. Subsequently, Ali and Storey [15] pre-
sented CRS4 and CRS5, Mohan and Shanker [16] CRSI and Ali et al. [17] proposed CRS6. In the
original version, CRS1, the search region � is sampled and then a simplex is formed from a subset
of this sample. One of the points of the simplex is reJected in the centroid of the remaining points
(as in the Nelder and Mead) to obtain a new trial point. If the new trial point is better than the
current worst point in S then it replaces the worst point. The process of forming a new simplex
and generating the trial point is then repeated until some stopping condition is met. In the second
version, CRS2, a more sophisticated use is made of the simplexes in obtaining new trial points. In
the third version, CRS3, a Nelder–Mead-type local search (DS) is incorporated. In versions CRS4
and CRS5 further local techniques are introduced. The version CRS6 incorporates a local technique
with a quadratic interpolation. The use of the quadratic interpolation replacing the simplexes within
the framework of CRS (CRSI) is also proposed in Mohan and Shanker [16]. It is easy to describe
all CRS algorithms based on the description of CRS1.

Algorithm 1. The CRS1 algorithm.
Step 1: Determine the initial set S

S = {x1; x2; : : : ; xN};

where the points xi; i=1; 2; : : : ; N are sampled randomly in �; evaluate f(x) at each xi; i=1; 2; : : : ; N .
Take N�n, n being the dimension of the function f(x). Set generation counter k = 0.
Step 2: Determine best, worst point in S. Determine the points xmax; xmin and their function values

fmax; fmin, such that

fmax = max
x∈S

f(x) and fmin = min
x∈S

f(x):

If the stopping condition (e.g., fmax − fmin ¡ �) is satis(ed, then stop.
Step 3: Generate point to replace point in S. Choose randomly n+1 distinct points xp(1); xp(2); : : : ;

xp(n+1) from S (selection) and compute (by, say mutation)

x̃ = 2G − xp(n+1); (1)

where the centroid G is given by

G =
1
n

n∑
j=1

xp( j): (2)

If x̃ �∈ � go to Step 3; otherwise compute f(x̃). If f(x̃)¿fmax then go to Step 3.
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Step 4: Update S. Update S by

S = S ∪ {x̃} − {xmax};

set k := k + 1 and go to Step 2.

Notice that the core operation, i.e., the operation through which the trial points are generated in
the CRS1 algorithm is in Step 3. Therefore, all other CRS algorithms are derived by modifying this
step.

The CRS algorithms, CRS2–5, use simplexes but they di4er from CRS1 in that they make a
random selection of n points in S and include the current best point bringing the number of points
up to n + 1. Therefore, the modi(cation of Step 3 is that n distinct points xp(2); xp(3); : : : ; xp(n+1) are
sampled from S and that G is calculated by

G =
1
n


xmin +

n∑
j=2

xp( j)


 : (3)

The CRS2–5 algorithms then calculate a trial point using (1). CRS1 becomes CRS2 by simply
replacing (2) with (3). Each of CRS3–5 has an extra local feature added to the global feature of
CRS2. For instance, CRS3 replaces (2) with (3) but each time (1) in Step 3 (nds a new xmin, CRS3
incorporates a Nelder–Mead-type local search from the best n + 1 points of the set S. CRS4 and
CRS5 also implements (3) but instead of using a Nelder–Mead-type local search whenever a new
xmin is found, CRS5 uses a gradient-based local search from xmin, and CRS4 evaluates f in r points
(e.g., r = 4) from the �-distribution using the current xmin as its mean and the distance between xmin

and xmax as standard deviation. CRSI simply uses a quadratic interpolation in Step 3 to generate the
trial point x̃. The quadratic interpolation uses a = xmin and two other randomly selected points {b; c}
from S to determine the coordinates of the trial point x̃ = (x̃1; : : : ; x̃n), where

x̃i =
1
2

(bi2 − ci2)f(a) + (ci2 − ai2)f(b) + (ai2 − bi2)f(c)
(bi − ci)f(a) + (ci − ai)f(b) + (ai − bi)f(c)

: (4)

CRS6 also uses the quadratic interpolation but as soon as the trial point x̃ becomes the best point
in S it uses �-distribution as in CRS4.

To summarize, CRS1 uses (1) together with (2) to generate trial points away from xp(n+1) in
the direction of the centre of gravity of the remaining n point, whereas CRS2 uses (1) with (3) to
generate points in the direction of the centre of gravity of n points including the best point, xmin.
CRS3–5 includes localization features added onto the point generation feature of CRS2, i.e., each
time rule (1) and (3) produces a best point a local exploration feature is applied. This local feature is
di4erent for di4erent algorithms. CRS6 and CRSI uses the quadratic interpolation method to generate
trial points. This interpolation method uses the best point in the set S. A localization feature is added
to CRS6 but not in CRSI. We use Table 1 to distinguish between the CRS algorithms.

Remark 1. The three main features of CRS are (i) selection, (ii) reproduction and (iii) acceptance.
The selection of n points for CRS2–5, n + 1 for CRS1 and 2 points for CRS6/CRSI is random.
Reproduction consists of mutation only, e.g., the operation de(ned by (1), for CRS1–5, a single
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Table 1
Local and global features of CRS

Algorithm Local and global features

CRS1 Global feature only: use (1) and (2)
CRS2 Global feature only: use (1) and (3)
CRS3 Global feature: use (1) and (3); local feature DS
CRS4 Global feature: use (1) and (3); local feature: �-distribution
CRS5 Global feature: use (1) and (3); local feature: Gradient based search
CRSI Global feature only: use (4)
CRS6 Global feature: use (4); local feature: �-distribution

interpolation for CRSI and the interpolation and � distribution for CRS6. Acceptance of the trial
point is not compulsory.

2.2. Genetic algorithms (GA)

The genetic algorithm is a global optimization technique based on natural selection and the genetic
reproduction mechanism. Like CRS, GA maintains a set S of candidate solutions, where each solution
is coded as a binary string known as chromosome. Central to GA is the natural evolution of the set
S. At each generation of GA a new S evolves from the old S, i.e., each generation updates the set
S. As the generation proceeds, the set of solutions in S converges to the global minimum. In the
basic GA, three steps are involved in the evolution from one generation to the next. These are:

• evaluation of f at each new member of the current set S;
• stochastic selection of points (parents) from the current set S with a bias in the selection towards

better points;
• reproduction of new points (children) from the selected points (parents) using the two genetic

operations: crossover and mutation. The crossover operation is achieved by taking two selected
points, cutting the strings at random index and exchanging parts. Mutation is achieved by simply
Jipping the bit at some random index.

This cycle of evaluation, selection and reproduction terminates when a convergence criterion is met.

2.2.1. Genetic algorithm (GA1) for function optimization
The binary coded GA can be modi(ed for function optimization [18,19]. Recent applications

of GA on function optimization, however, have shown that the real coded GA is superior to its
conventional binary coded counterpart [11,12,19]. A real-coded GA treats chromosomes as vectors
(points) of real valued numbers and it adapts the genetic operators accordingly. Several versions of
real coded GA have been proposed. Yen and Lee [20] proposed a real coded GA which combines
GA with a stochastic variant of the DS method. Recently, a hybrid algorithm comprising of GA
and DS was proposed by Yang and Douglas [21]. One main problem with these methods is that at
each generation the whole population needs rank ordering in accordance with the function values,
which is expensive in terms of cpu time even for a moderate population size. Moreover, numerical
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investigations with a wide range of problems were not carried out. Most recently, Hu et al. [11,12]
has proposed a new version of real coded GA. Numerical studies were carried out on a relatively
large set of test problems with the conclusion that the convergence of the algorithm is rapid.

In this implementation the crossover is done arithmetically, i.e., given the parents x=(x1; x2; : : : ; xn)
and y = (y1; y2; : : : ; yn) one calculates:

x̃i = �ixi + (1 − �i)yi; ỹ i = �iyi + (1 − �i)xi; i = 1; 2; : : : ; n; (5)

where �i are uniform random numbers in [ − 0:5; 1:5]. The crossover rule de(ned by (5) does not
maintain the convexity property, but it is exploratory. For instance, points will be generated not only
on the lines joining x and y but around the line as well as further sides of both the points. Mutation
for a string is carried out by setting

x̃i = x̃i + � × (Ui − Li); (6)

for a randomly selected index i and � = 0:1. Here, Ui and Li are the upper and lower bound of the
element xi. An important factor in GA is the selection scheme used. A tournament selection scheme
with three players was found robust [11,12]. Therefore, rank ordering is no longer needed in this
implementation of GA. Here we restrict ourselves to the real coded GA and in particular to the
algorithm of Hu et al. [11,12].

Although the real coded genetic algorithm (GA1) proposed by Hu et al. [11,12] is noise tolerant
and claimed to be robust some aspects of this GA need to be addressed. For instance, the (rst
drawback is that the selection procedure used was the so-called tournament selection where each
time the best of three randomly chosen parents was selected, and the process continued until m1

parents were selected; m1 children were then produced from these m1 parents using crossover and
mutation. We believe that this selection criterion is too biased towards the better points and therefore
it is too greedy and may only work for extremely easy problems. Indeed, GA1 was tested on a large
class of test problems, and all these problems are easy to solve as shown in a recent study [10]. The
second drawback is that the mutation operator is rather randomly chosen, in particular, the choice
of �. If the di4erence between Ui and Li is high then this will create a point far away from the
point generated by crossover operation. This point will be accepted by the mandatory acceptance
rule and it has a particular disadvantage of slowing down the convergence at the later stage of the
algorithm when the N points are scattered around the global minimizer. Moreover, comparison of
GA was made with the CRS6 algorithm only. Since the results of their paper were given only for
the parallel implementations of GA and CRS, comparisons made by the authors [11,12] were not
systematic. For instance, the population sizes used in the algorithms were not equal. We address
these issues in the next section and propose a modi(cation to GA1. We will also compare GA1 with
other algorithms in a systematic manner using both easy and di.cult problems. We now describe a
generic real coded GA.

Algorithm 2. The genetic algorithm (GA1).
Step 1: Determine the initial set S. Same as in Algorithm-1.
Step 2: Determine best, worst point in S. Same as in Algorithm-1.
Step 3: Generate points to replace points in S.
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• Selection: select m16N points from S as parents.
• Crossover: pair the points (parents) and generate m1 new points (o4springs), which replaces the

m1 worst points (least (ttest strings) in S.
• Mutation: mutate an element of each point (string) with probability p�, say p� = 0:001. Mutation

is repeated if the mutated solution is infeasible.

Step 4: Update S. Update S, set k := k + 1 and go to Step 2.

The number of children, m1, to be created per generation will a4ect the performance of the GA.
For the sequential GA, a smaller m1, e.g., the nearest even integer to 0:1N , is suggested [12,21].

Remark 2. Selection of m1 points is biased towards the better points. Reproduction consists of
crossover and mutation. Acceptance is compulsory as the m1 children replaces the m1 parents in
each generation.

2.2.2. The modi;ed genetic algorithm (GA2) for function optimization
To address the (rst drawback we replace the tournament selection with a random selection. In

addition to the crossover rule (5), a learning component is introduced in the crossover phase to make
GA more exploratory. As in GA1, children are created two at a time in GA2. However, unlike GA1
where two children are created using two parents obtained by using tournament selection GA2 creates
two children from randomly selected n+2 parents, xp(1); xp(2); : : : ; xp(n+1); xp(n+2), from S. The selected
n + 2 points are used to calculate the centroid G of the n points remaining after excluding the two
worst points, say xp(n+1) and xp(n+2). The (rst child is then taken as the best point of {x̂1; x̂2}, where

x̂1 = 2 × G − xp(n+1) and x̂2 = 2 × G − xp(n+2): (7)

If the jth point (j = 1; 2) x̂j is not in � then it is calculated as x̂j = 1
2(G + xp(n+j)). The second

child is found from the best of {x̂3; x̂4}, where x̂3 and x̂4 are obtained using the crossover rule
(5). This crossover is carried out between two parents selected randomly from the n + 2 points,
again excluding two worst points, say xp(n+1) and xp(n+2). If the trial points fall outside �, random
selection of �i ∈ [ − 0:5; 1:5] continues until x̂3; x̂4 ∈�. For the next pair of children n + 2 points
are again selected randomly from S and the above process continued. The m1 children are therefore
generated two at a time. Although the above-mentioned rules take two extra function evaluations
for each pair generated, this rule has proved robust and exploratory and therefore a good alternative
to the tournament selection. The mutation rate was set to p� = 0:001 for both GA1 and GA2. For
each child, xj generated the mutation is carried out with probability p� from a randomly chosen
component xi

j of xj. We ran into trouble when using (6), especially for problems with large �. For
such problems, points determined by (6) frequently fell outside � or move far away from the points
in S, delaying the convergence. Therefore, we carried out numerical studies to empirically obtain
the value of � in (6). A good value of � is found to lie randomly on an interval. In particular, we
modify the mutation operator (6) to

xi = xi + � × (Ui − Li); (8)

where � is a random number in [−0:01; 0:01]. This mutation rule was used for both GA1 and GA2.
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2.3. Di<erential evolution (DE)

DE [9] is a population set-based algorithm designed for minimizing a function of real variables.
It is extremely robust in locating the global minimum. The overall structure of DE resembles that
of CRS and GA. Like the other population set-based direct search methods DE also attempts to
guide an initial set S = {x1; x2; : : : ; xN} of points in � to the vicinity of the global minimum through
repeated cycles of selection, reproduction (mutation and crossover) and acceptance, see Algorithm 3.
However, unlike CRS which attempts to replace a single point in S per generation, and GA which
replaces m1 points (parents) of S by the new m1 points (children) per generation, DE attempts to
replace all points in S by new points at each generation. We now describe how this is done. In
each generation, N competitions are held to determine the members of S for the next generation.
The ith (i = 1; 2; : : : ; N ) competition is held to replace xi in S. Considering xi as the target point
a trial point yi is found from two points (parents), the point xi, i.e., the target point and the point
x̂i determined by the mutation operation. In its mutation phase, DE randomly selects three distinct
points xp(1); xp(2) and xp(3) from the current set S. None of these points should coincide with the
current target point xi. The weighted di4erence of any two points is then added to the third point
which can be mathematically described as:

x̂i = xp(1) + F × (xp(2) − xp(3)); (9)

where F6 1 is a scaling factor. The trial point yi is found from its parents xi and x̂i using the
following crossover rule:

yj
i =

{
x̂j

i if Rj6CR or j = Ii;

xj
i if Rj ¿ CR and j �= Ii;

(10)

where Ii is a randomly chosen integer in the set I , i.e., Ii ∈ I={1; 2; : : : ; n}; the superscript j represents
the jth component of respective vectors; Rj ∈ (0; 1), drawn randomly for each j. The entity CR is
a constant (e.g., 0.5). The ultimate aim of the crossover rule (10) is to obtain the trial vector yi

with components coming from the components of target vector xi and mutated vector x̂i. And this
is ensured by introducing CR. Notice that for CR = 1 the trial vector yi is the replica of the mutated
vector x̂i, i.e., only the mutation operation is used in reproduction. The e4ect of this will be studied
later. The acceptance mechanism follows the crossover. In the acceptance phase the function value
at the trial point, f(yi), is compared to f(xi), the value at the target point. If f(yi) ¡ f(xi) then
yi replaces xi in S, otherwise, S retains the original xi. The process continues until all members of
S are targeted. The stopping condition in Step 2, can for all algorithms be de(ned as:

fmax − fmin6 �; (11)

where � is a small number, say � = 10−6.

Algorithm 3. The DE algorithm
Step 1: Determine the initial set S. Same as in Algorithm 1.
Step 2: Determine best, worst point in S. Same as in Algorithm 1.
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Step 3: Generate points to replace points in S. For each xi ∈ S, determine yi by the following two
reproduction operations:

• Mutation: Randomly select three points from S except xi, the running target and (nd the second
parent x̂i by the mutation rule (9).

• Crossover: Calculate the trial vector yi corresponding to the target xi from xi and x̂i using the
crossover rule (10).

Step 4: Replace points in S. Select each trial vector yi for the (k + 1)th generation using the
acceptance criterion: replace xi ∈ S with yi if f(yi) ¡ f(xi) otherwise retain xi. Set k := k + 1 and
go to Step 2.

Design of DE certainly brought a new dimension to the direct search techniques in the (eld
of global optimization. However, we believe that some aspects of DE need addressing. First, the
sensitivity of the parameters F and CR was not studied, authors just chose their values randomly
with F mainly between 0.5 and 0.9 and CR between 0.1 and 0.9. Second, the implementation of DE
required some estimate of the global minimum to be provided; which is not possible for an arbitrary
function. Third, although the authors claim the robustness of DE, comparisons of DE with other
credible direct search methods of similar kind, such as CRS and GA were not made. And (nally,
the main di.culty with the DE algorithm appears to lie in the slowing down of the convergence as
the region of global minimum is approached. We try to address these problems in the next section.

Remark 3. Selection of 3 points used in mutation is random. Reproduction consists of crossover
and mutation. Point-to-point comparisons are made for acceptance and thus the acceptance is not
compulsory. Notice that the trial point corresponding to the best point in S will be rejected if the
corresponding function value at the trial point is not better than fmin, but even if it is better than
the function value at second best point in S. The point-to-point comparison makes the re-search
procedure exploratory.

2.3.1. The modi;ed DE algorithms: DEPD, DE1-3
To overcome some of the above-mentioned drawbacks of DE and to make DE more e.cient we

propose some modi(cations to the original DE. In particular, we introduce an auxiliary set Sa of
N points alongside S, propose a rule for calculating the scaling factor F automatically and use the
pre-calculated di4erential vectors xp(2) − xp(3) in (9). We also empirically obtain an optimal value
for the CR. These will now be discussed.

Population sets: Instead of working with one population set S, we use two sets, S and Sa. The
reason for this is to make use of potential trial points which are normally rejected in DE. It has
been shown in our earlier work [22] that the introduction of Sa increases the exploration of the
search in the case of a very practical large-scale global optimization problem. Initially, two sets
each containing N points are generated in the following way; iteratively sample two points from
�, the best point xi going to S and the other x′

i to Sa. At each generation, if the trial point yi,
corresponding to the target xi, does not satisfy the greedy criterion f(yi) ¡ f(xi) then the point
yi is not abandoned altogether, rather it competes with its corresponding target in the set Sa. If
f(yi) ¡ f(x′

i) then yi replaces x′
i in the auxiliary set Sa. Some good points from Sa can then be

used to replace some bad points in S periodically.
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The scaling factor: The calculation of F is based on the demand that the search be diversi(ed at
early stages and intensi(ed at latter stages. Therefore, the following scheme is proposed:

F =




max
(

lmin; 1 −
∣∣∣∣fmax

fmin

∣∣∣∣
)

if
∣∣∣∣fmax

fmin

∣∣∣∣ ¡ 1;

max
(

lmin; 1 −
∣∣∣∣fmin

fmax

∣∣∣∣
)

otherwise;

(12)

ensuring that F ∈ [lmin; 1). fmax and fmin are respectively the maximum and minimum values in S
and lmin is a lower bound for F .

The pre-calculated di<erentials (PD): DE proposed by Storn and Price generates di4erential
vectors (one for each targeted point) in the mutation phase at each generation of the algorithm.
Therefore, N di4erential vectors will be calculated by (9) in each generation. Although mean of the
distribution of such di4erentials is always zero (since xp(2) − xp(3) and xp(3) − xp(2) occur with equal
frequency) these di4erentials vectors will gradually be shorter and shorter as the points in S become
closer and closer. And this has two e4ects: (i) calculation of N di4erentials at each generation makes
DE time consuming and (ii) it (calculation of the di4erential vectors at each generation) limits the
exploratory feature of DE. The motivation of PD is to make DE faster and exploratory, and one
way this could be achieved is to use pre-calculated di4erentials in the mutation operator.

We now explain how the pre-calculated di4erentials are used in DE. At the very (rst iteration
of the algorithm all the di4erential vectors generated are kept in an array A. In the consecutive
generations (say, the next R generations) when the point xi ∈ S are targeted, the intermediate point
x̂i is calculated using (9) by choosing a random point xp(1) from S and a random di4erential from A.
This process continues in the mutation phase for R generations of the algorithm before A is updated
again with new di4erentials. Therefore, in this version of DE the mutation operation has two di4erent
modes: mode 1 where new di4erentials are used in (9) (mutation use three distinct vectors from S)
and mode 2 where pre-calculated di4erentials stored in A are used in (9). Mode 1 of the mutation is
switched on after every R generations i.e., after every R generations the array A is updated with new
di4erentials. By simply making this change in DE, the algorithm can be made substantially faster
and exploratory. This change is implemented in the mutation phase. We call this implementation of
DE the di4erential evolution using pre-calculated di4erential (DEPD) which replace the Step 3 of
Algorithm-3 with:

Step 3: For each xi ∈ S, determine yi by the following two operations.

• Mutation: If (k = 0) or k ≡ 0(mod R) execute mode 1 else mode 2.
• Mode 1: Randomly select three points xp(1); xp(2) and xp(3) from S except xi, the running target

and (nd the point x̂i by the mutation rule (9) using the di4erential vector (xp(2) − xp(3)). If a
component x̂j

i falls outside � then it is found randomly in-between the jth lower and upper limits.
Update the ith element of the array A with this di4erential.

• Mode 2: Randomly select a point xp(1) from S and a di4erential vector from A and (nd the point
x̂i by the mutation rule (9). If a component x̂j

i falls outside � then it is found randomly in-between
the jth lower and upper limits.

• Crossover: Calculate the trial vector yi corresponding to the target xi from xi and x̂i using the
crossover rule (10).
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Although we will justify the use of PD in the DE algorithm, it is not our intention to present DEPD
as a stand-alone algorithm for our current piece of work. We use PD as an embedded component
of some modi(ed DE algorithms whose features are given below.

Features of the modi;ed DE: The modi(ed DE utilizes the potential points of Sa; after each M
number of generations (R is not necessarily equal to M) we replace the m2 worst points in S with
the m2 best points from Sa. The value of M can be chosen as constant or variable. In the case of
variable M , the initial value is set to an integer and it is gradually decreased so that the convergence
becomes quicker as the points in S converge to the region of the global minimum. In this version
of the modi(ed DE the stopping condition remains the same, namely (11), the one which was used
for all the methods (CRS, GA and DE) described so far. We call this DE, the DE1 algorithm. We
also incorporate a local search in the modi(ed DE which operates from the worst (DE2) or best
(DE3) n + 1 points of S, immediate before the worst (DE2) or the best (DE3) n + 1 points of
S is replaced with the best n + 1 of Sa. As indicated above we call these modi(ed versions, DE2
and DE3, respectively. Notice that for DE3 even if S contains the best points it gets replaced. The
DE2/DE3 algorithm stops when the same minimum is found t times or when (11) is met. We have
implemented the Nelder–Mead’s DS algorithm as a local search algorithm in DE2 and DE3. The
DS algorithm was stopped when fhi − flo ¡ 10−4, flo and fhi, respectively, being the best and the
worst values within n + 1 function values of DS. With this stopping condition for DS we found that
su.ciently good accuracies were obtained for all the problems considered. We also considered two
minima as the same when their di4erence fell within the tolerance of 0.005. We now present the
modi(ed DE algorithms.

Algorithm DEn. The DE1, DE2 and DE3 algorithms now can be described by the following pseudo
Pascal procedure.

begin
initialize S and Sa;
initialize M , M1, M2 and R;
(nd fmin and fmax;
calculate F ;
k := 0;
repeat

k := k + 1;
call procedure mutation (for k = 0 initialize A and update A if (k mod R) = 0);
call procedure crossover;
call procedure acceptance;
(nd fmin and fmax;
calculate F ;
if ((k mod M) = 0) then
begin
(For DE2 (DE3) activate local search and keep record of local minima found);
Replace the worst (best) m2 points of S with the best m2 points of Sa;
M := M − n;
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if M ¡ = M1 then M := M1;
(nd fmin and fmax;
calculate F ;
end;
until stopping condition;

end

3. Problems used for comparisons

Performance of all the population set-based direct search algorithms described thus far were judged
using two classes of test problems. They are the classes of easy and di.cult problems [10]. We
consider a set A of nine easy test problems for our study. These are the two-dimensional Gold-
stein and Price (GP) problem, the four dimensional Shekel family (S5, S7 and S10), the Hartmann
family (the three- and six-dimensional Hartmann problems; H3 and H6), the Schubert family (the
three- and (ve-dimensional Schubert problems; P8 and P16) and the 10-dimensional problem of
Levy (L10). Although some of these problems have a multitude of local minima, in particular the
Schubert family (53 and 155 minima, respectively) and the problem of Levy (1010 minima), a recent
study have shown that all these problems are easy to solve and that one should rely not only on
these test problems when testing a particular algorithm. Details of some properties of these test
problems are given in [10], and will not be repeated here. Besides these, we also consider another
set, B, of six relatively di.cult test problems. These are the 10-dimensional Extended Rosenbrock
(ER10), Schewefel (SF10), Griewank (GW10), the (ve-dimensional Shekel’s Foxholes (FX5), Ras-
trigin (RG5) and the modi(ed Langerman (ML5). Of these FX5 is a di.cult problem and the rest
are moderately di.cult problems (according to the study done by T-orn et al. [10]). The problems
of set B are given in Appendix A.

4. Numerical results

In this section the computational results are summarized. Each of the algorithms was run 100
times on each of the test problems to determine the percentages of success. Let TS be the number
of runs out of 100 runs that succeeded in locating the global minimum by the respective algorithm.
A solution to the problem will of course not be the global minimum f∗ exactly, but for instance a
value less than f∗

� , where f∗
� =f∗ + �, where �=10−4. To even out the stochastic Juctuations in the

number of function evaluations and cpu times by computing averages FE and cpu for those runs for
which the global minima were obtained. The performance is measured by criteria based on FE, cpu
and TS. All algorithms were run on a SGI-Indy Irix-5.3. Random numbers were generated using the
well-tested procedure given in [23]. A common parameter of all population set-based direct search
methods is the size N of the population used. Di4erent values for N are suggested for di4erent
methods. For example, CRS uses N = 10(n + 1); for DE a value between 5n to 10n is suggested;
for GA no (xed and (rst rule of choice is given. Therefore, as a compromise we use two values for
N , namely 7n and 12n. In an earlier investigation [6,7] of the robustness of some stochastic global
optimization algorithms [5,24–26] using test problems and some di.cult practical problems, CRS4



M.M. Ali, A. T.orn / Computers & Operations Research 31 (2004) 1703–1725 1715

Table 2
Comparison of GA1 and GA2 using percentage of TS

GA1 GA2

N → 7n 12n 7n 12n

GP 4 25 44 77 Set A
S5 4 14 58 69
S7 2 22 65 82
S10 2 26 67 83
H3 73 94 100 100
H6 58 100 93 95
P8 22 66 97 100
P16 23 79 96 100
L10 64 96 100 100

Total 252/900 522/900 721/900 806/900

ER10 0 0 93 100 Set B
RG5 0 4 3 3
FX5 0 2 1 2
GR10 0 22 13 27
SF10 0 4 0 0
ML5 6 14 36 52

Total 6/600 46/600 146/600 184/600

was found to be the best and CRS2 the runner up amongst all of a set of stochastic algorithms.
Therefore, in our present investigation of the population set-based direct search methods we consider
CRS2, CRS4, CRS6 and CRSI where CRS6 and CRSI are two recent versions of CRS.

4.1. Comparison: GA1 vs GA2

Choice of parameter values: Parameters involved in GA’s are the mutation probability p�, the
number of children m1 and the model parameters �i and �, respectively, in the crossover and mutation
rule. Common values of these are used for both GA1 and GA2.

Comparison: In this section we compare GA1 and GA2 using the test sets A and B. We (rst
(nd the percentage of success (TS) in locating the global minima. Table 2 represents the success
rate (%) for 100 runs. Table 2 shows that the reliability of GA2 is superior to that of GA1 for
both values of N . It is clear from the total (gures that for the test set A, the total number of
successes of GA2 is about the double of that of GA1 on the average. Since the performance of
GA1 is considerably better for N = 12n, we compare the total FE and cpu for this value. The total
(FE; cpu) is (13776; 2:06) corresponding to the total of 522 successes for GA1, and is (24108; 4:11)
corresponding to the total of 806 successes for GA2. However, although GA2 is superior to GA1 in
locating the global minimum it needs double (FE; cpu) as compared with that needed by GA1. We,
therefore, study further to see if GA1 outperforms GA2 on set A in (nding the global minimum
given (FE; cpu) nearly the same. For this reason, we ran GA1 on the test set A with increasing
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Table 3
Successful runs out of 900 runs for DE using CR and F

F ↓ CR = 0:25 CR = 0:5 CR = 0:75 CR = 1

0.45 865 866 861 774
0.65 897 894 887 866
0.85 899 898 886 870
1 896 899 895 658

Total 3557 3557 3529 3168

values of N . For instance, N = 12n; 15n; 18n; 21n and 24n and so on. We found that for N = 24n
the (FE; cpu) was (23972; 5:75) for a total of 701 successes on A. Comparing this with the result of
GA2 for N = 12n we see that even though both used more or less the same (FE; cpu) GA2 is still
superior in TS. In a similar manner, we ran GA2 on the test set A with decreasing values of N . We
found that for N = 8n, the (FE; cpu) was (13885; 2:86) for a total of 754 successes on A. This result
(13885; 2:86) is the nearest (FE; cpu) needed by GA1 for N =12n but with less successes (TS=522)
in obtaining the global minimum. It is now clear that for the same (FE; cpu) GA2 is much superior
to GA1 on A in locating the global minimum.

For the test set B the results are (25174; 9:98), TS = 46 for GA1 and (23904; 6:91), TS = 84 for
GA2. For set B we must exclude ER10 from the comparison as GA1 has a 0% success rate on
ER10. Moreover, GA2 needed on average (FE; cpu) = (494470; 58:87) per run for ER10. From this
we can confer that GA2 is superior on both sets. Therefore, in comparing the direct search methods
later we will only consider GA2.

4.2. Comparison: DE vs DEPD and DE1-3

Choice of parameter values: The original DE has two parameters: F and CR. We begin here
by studying the e4ect of CR in DE. Although the e4ect of calculating F using (12) is shown
next, we study the correlation between F and CR using some sample values. In particular, we take
F = 0:45; 0:65 0.85 and 1 and each of these values we conducted a series of DE runs using various
values for CR. For instance, we ran DE for CR = 0:25; 0:5; 0:75 and 1 using N = 7n. The results on
both sets were in agreement and we present only the results for set A. There were 900 runs on set A
and the total number of successes on these runs are presented in Table 3. The last column in Table 3
shows that the higher number of failures has occurred when using CR = 1, i.e., when the trial points
are obtained using the mutation rule (9) only. The performance of DE is signi(cantly worse in this
case. A comparison of the results under this column with that of columns 2–4 establishes the fact
that both the crossover and mutation are necessary in obtaining trial points in DE. For columns 2–
4, TS increases, on average, with the increase of F . From the results in the last row it can be seen
that total number of successes for the second and third columns are the same, but it (total of TS)
is much less for column four. We now compare the number of function evaluations required for the
results in Table 3. Except the Levy function, the FE decreases with the increase of CR, for all F and
for all test functions, in all runs. Since the total FE is dominated by FE for L10, we exclude the FE
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Table 4
Comparison of total FE using CR and F

F ↓ CR = 0:25 CR = 0:5 CR = 0:75 CR = 1

0.45 68941 25490 19439 20245
0.65 76589 29525 25664 25471
0.85 91144 38751 36783 39440
1 102788 46306 48150 46663

Average 84865 35018 32509 32954

required for Levy. The results of 8 test functions are presented in Table 4. Here, FE is the average
number of function evaluation per successful run and the total FE in Table 4 represents total of 8
such FE in set A.

We now compare Table 3 with Table 4. We (rst compare columns 3 and 4 on both the tables.
Comparing average FE in the last row on Table 4, it can be seen that FE for column 3 is about
7% more than that of column 4. However, in term of success column 3 on Table 3 is superior to
column 4 (3557 vs 3529). Comparing columns 2 and 3, we see that average FE of column 3 on
Table 4 is about 59% superior to that of column 2, given the same number of total successes for
these two columns in Table 3. Even if we include FE for L10, still it (average FE for column 3
on Table 4) remains about 43% superior to that of column 2. This motivates us to use CR = 0:5,
halfway between the two parents, throughout our numerical investigation. This policy ensures that
each parent’s components has 50% chance of being selected to produce a new point.

Next we motivate the choice of F . We propose a good strategy for F : the value of F should be
large at the early stages and small at the later stages. To this end, we ran DE with CR = 0:5 and
F being calculated using (12). For this, at the beginning of each generation new fmin and fmax are
found prior to the calculation of F . In this implementation of DE on set A the TS was 892, three
more than average TS of column 3 of Table 3, and the total result (excluding L10) on FE was
29596 which is about 15% less than average FE of column 3 of Table 4. Similarly, the cpu = 1:39
is about 7% less than the corresponding cpu in Table 4. The results motivated us to use F from
(12) throughout the rest the paper. A good value of lmin was empirically found to be in [0:4; 0:5].
However, in all implementations we have used lmin = 0:4.

So far we have obtained the empirical choice of F , CR and lmin in (12) for the DE algorithm.
Next we introduce the pre-calculated di4erentials (PD) in the DE algorithm to make it faster. We
begin our numerical studies by comparing DE with DEPD. DEPD is DE using PD. We compare
these two using a number of values for the parameter R. Notice that for R = 0 DE and DEPD
are identical. We again use the test set A with N = 7n. About the same level of TS and the same
stopping condition conveniently allowed us to compare the e.ciency of the algorithms in terms of
cpu and FE. We present the results for DEPD using R=1; 2; : : : ; 5. Hence for a set of results for DE
there are (ve sets for DEPD. We summarize these results in Table 5. We present the percentage of
improvement by which DEPD outperforms DE. Improvements are recorded on total results. Total is
the total of average cpu and FE for each function. Averages are taken on successful runs over 100
runs. As predictable, Table 5 clearly shows the superiority of DEPD over DE in cpu. However, it is
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Table 5
Improvements of DEPD over DE

M 1 2 3 4 5

cpu 13% 14% 17% 26% 10%
FE 0.12% −0:22% −1:33% −1:40% −6:64%

inferior to DE in FE for some cases. This superiority of DE over DEPD is by a very small margin
and except for R = 5 this superiority can be ignored. Clearly the overall best results are obtained at
R = 4 and for the rest of our numerical studies we use this value for R.

With the introduction of PD we have shown that DE can be made signi(cantly faster. Therefore,
together with the other good choice of F , CR and lmin we use R=4 in all of our modi(ed algorithms.

For our (rst modi(ed algorithm, the DE1 algorithm, the other parameters involved are: M and
m2. The value of M is selected to lie in [M1; M2]. Initially, M is set to M2, its highest value, and
then gradually decreased to its lowest value M1. To clarify further, after M (=M2) generations, m2

best points from Sa replaces m2 worst points in S and then M is reduced to, say M − n, before
the next replacement takes place. The process continues until M reaches M1. For M = M1, the
replacement process continues after every M1 generations. The e4ect of m2 in DE1 was also studied
by considering m2 = n + 1 and 2(n + 1). A numerical investigation has shown that M1 = 5n and
M2 = 7n work well for DE1.

The modi(ed DE2 and DE3 algorithm also replaces m2 points of S inasmuch as the same way
as in DE1, but they explore the m2 points using a local search from them just before their (m2

points) replacement. For instance, in DE3 the local search starts from m2 best points of S and as
soon as the local search is completed they are replaced with the best m2 points in Sa. Therefore,
m2 is (xed and for DE2/DE3 the value of m2 is always set to n + 1. The values of M1 and M2 are
the same as in DE1. However, if the local search produces more than 5 local minima then these
values were doubled, i.e., M1 = 10n and M2 = 14n to prevent (nding multiple local minima. The
value of t determines one’s con(dence in that points in S have converged to a minimum, and we
have investigated this by choosing di4erent values for t.

Comparison: We now compare DE and its modi(ed versions, DE1, DE2 and DE3, using total FE,
cpu and the total number of successes out of 900 runs for set A and 600 runs for set B. The results
are summarized in Table 6. It is important to note that DE2 and DE3 were the only algorithms to
locate the minimum value for ER10 with success rates about 20% on the average. Since neither DE
nor DE1 succeeded in (nding the minimum for this problem even once, and the fact that around
40% of the total FE is determined by the FE required for ER10 by DE2 and DE3, a fair comparison
is also made excluding the results obtained for ER10, we call this test set B′. The best results were
obtained by DE3 on set A and by DE1 on the sets B and B′. Table 6 also shows that comparatively
less success occurred for DE2 with t = 3 on both sets and therefore in our next comparison results
using t = 4 are considered.

For a further comparison we also ran DE(CR = 0:5; F = 1) and DE(CR = 0:5, F from (12)) on
both A and B′. The total number of successes of DE (CR = 0:5; F = 1) on A is (899; 897) and on B′
(394; 407) for the pair of population sizes (7n; 12n). These results for DE(CR =0:5, F from (12)) are
(892; 900) and (396; 406), respectively, on A and B′. From these results and the results presented in
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Table 6
Comparison of DE1 and DE2 using FE, TS and cpu

DE1 DE1 DE2 DE2 DE3
t = 3 t = 4 t = 4

m2 → n + 1 2(n + 1) n + 1 n + 1 n + 1

N → 7n 12n 7n 12n 7n 12n 7n 12n 7n 12n

Set A
FE 53242 97832 51394 94701 38265 62138 42194 71980 38989 62266
cpu 2.43 5.49 2.56 5.33 1.78 3.27 1.84 4.04 1.79 3.57
TS 886 893 887 889 882 879 893 898 897 900

Set B
FE 113410 224303 105643 196101 219808 421298 233654 421228 292252 499114
cpu 9.56 22.07 9.42 20.65 14.49 30.11 15.30 33.08 17.84 38.08
TS 397 408 397 407 407 422 411 421 421 435

Set B′

FE 113410 224303 105643 196101 131725 260027 144672 256906 172714 280502
cpu 9.56 22.07 9.42 20.65 11.15 22.43 11.79 25.52 13.08 26.14
TS 397 408 397 407 385 394 389 401 388 403

Table 7
Percentage of improvement made by DE1-3 over DE on FE

DE1 DE1 DE2 DE3
t = 4 t = 4

m2 → n + 1 2(n + 1) n + 1 n + 1

N → 7n 12n 7n 12n 7n 12n 7n 12n

DEa 30 23 42 26 52 44 56 51 Set A
47 42 50 50 32 33 19 27 Set B′

DEb 13 10 17 13 32 34 37 43 Set A
37 30 41 39 20 20 4 12 Set B′

aDE(CR = 0:5; F = 1).
bDE(CR = 0:5, F from (12)).

Table 6 it is clear that TS attained by DE and by all the modi(ed DE methods both on A and B′ are
very much the same. Therefore, it will be interesting to see how much improvement (say, on FE) has
been achieved by the proposed modi(cations, given the same level of success. This is summarized in
terms of percentage of improvement on FE in Table 7. Table 7 shows that a substantial improvement
has been achieved by the proposed modi(cations. In Table 7 the (gures in a row for DE(CR = 0:5,
F from (12)) are less than in the corresponding row for DE(F = 1; CR = 0:5), meaning that a good
percentage of reduction has been achieved by using (12). However, the majority of the improvements
have occurred due to other features of the modi(ed algorithms, i.e., other changes made to the DE.
Although DE2 and DE3 are close, DE3 gave slightly better results on the average.
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Table 8
Rank ordering based on set A

Rank 1 2 3 4 5 6 7 8 9 10

FE CRS6 CRSI GA2 CRS4 CRS2 DE3 DE2 DE1 DE2 DE1

cpu CRSI CRS6 CRS4 CRS2 DE3 DE2 GA2 DE1 DE2 DE1

TS DE3 DE2 DE1 DE2 DE1 CRS4 GA2 CRS2 CRS6 CRSI

Table 9
Rank ordering based on set B

Rank 1 2 3 4 5 6 7 8 9 10

FE DE1 DE2 DE1 CRSI CRS6 DE2 DE3 GA2 CRS4 CRS2
cpu DE1 DE2 DE1 DE2 DE3 CRSI CRS6 GA2 CRS4 CRS2
TS DE3 DE2 DE1 DE2 DE1 GA2 CRS2 CRS4 CRS6 CRSI

4.3. Comparison: CRS vs GA vs DE

In this section we compare all population set-based direct search methods to single out a general
purpose and robust global optimization method. For this purpose, a rank ordering (from superior to
inferior) based on some measure is needed. For the test set A all DE algorithms, except very few
cases, were able to locate the global minimum for all problems. Performance of other direct search
methods is also better for set A than for B. Therefore, the ranking based on TS, total FE and cpu
can be made. All results are presented for N = 12n, and for the modi(ed DE, m2 = n + 1 is used.
The rank ordering is shown in Table 8. Table 8 shows that in terms of FE and cpu the CRS and
GA are superior but this ranking is reversed in favor of DEs in term of TS. Moreover, in terms
of TS the worst performing DE-type method, DE1, is about 5% superior to the best performing
CRS-type method, CRS4. On the other hand, in terms of FE the best performing DE-type, DE3,
is about 39% worse-o4 than the worst performing CRS2 within CRS. However, in terms of cpu
CRS2 is about 18% superior to DE3. For set A, DE and the modi(ed DE are robust in (nding the
global minima but CRS are faster in cpu and use less FE. However, the problem with CRS was
that CRSI failed 7 times to converge, twice for S10 and 5 times for S5. By convergence, here, we
mean convergence either to a local or to the global minimum. Since in the above table the ranking
is almost reversed on e.ciency and reliability we try to measure the reliability by keeping the total
FE roughly constant. To this end, we ran CRS4 the neighbour of DE1 in the third row of Table 8
with a increased value of N = 17n to achieve roughly the same level of total FE. Although the total
success TS of CRS4 is now increased from 856 to 871, but it is still far short of 893 the TS for
DE1. If we now run DE1 with a smaller N (e.g., N =6n) for which the FE is more or less the same
with CRS4, it still retains superiority over CRS4 in TS. This clearly demonstrates that the DE-type
algorithms are always superiors on A. Next we consider the test set B to rank order the algorithms,
and the ranking is presented in Table 9. Table 9 shows that the DE-type algorithms are the best in
terms of cpu and TS. In terms of TS the worst performing DE-type, DE(CR = 0:5; F = 1), is 55%
superior to its close competitor GA2 and 59% superior to CRS2, the best performer of CRS. In
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terms of FE the worst DE-type, DE3, is worse-o4 to both CRS6 and CRSI by about 8% but if we
compare DE3, CRSI and CRS6 in terms of TS the superiority of DE3 becomes apparent from the
third row. Above all, DE2 and DE3 become the best overall performers if we exclude ER10, the
minimum of which was only located by GA2, DE2 and DE3. Therefore, the overall comparisons in
Table 9 shows that for the moderate to di.cult test problems in set B, DE and the modi(ed DE
algorithms always perform better. Moreover, except for GR10, CRSI failed to converge on the rest
of the test problems of set B 9 times in all. The CRS2 algorithm also failed to converge 71 times
for GR10, 3 times for RG5 and 62 times for SF10, respectively. The other algorithms did not have
any such problems of convergence.

5. Discussion and conclusion

The optimization of non-di4erentiable functions (including noisy or not exactly known functions)
is a common problem occurring in various applications. Therefore, using direct search methods which
have shown to be robust and e.cient could be rewarding. We have developed several versions of
the di4erential evolution (DE) method. From the comparison in the previous section it is quite clear
that the new algorithms are superior not only to the original DE but also to many other recent direct
search global optimization algorithms. What makes the DE-type algorithms more robust than the
CRS and GA-type algorithms is the feature that all points in the set S are possibly updated for each
generation. In this way DE has the potential to explore � widely with the help of the existing points
of the current generation. The CRS-type algorithms lack this features in that they repeatedly replace
the xmax whenever a better points is found. This ignores the potential of the points xmax in driving
the search and thus making it less exploratory. Unlike DE, where a replacement is done after a point
to point comparison, in GA the replacement of m1 worst points with m1 better points is mandatory.
This repeated replacement in CRS and mandatory replacement in GA makes the re-search procedure
of the respective algorithm more intensi(ed rather than diversi(ed. Whereas the DE-type algorithms
have the capacity to maintain a balance between this two features: intensi(cation and diversi(cation.
The modi(ed DEs have incorporated the features to make the search diversi(ed at early stages
and intensi(ed at later stages. Moreover, even if DE2 and DE3 stop at a local minimum using the
stopping rule (11) (and not using t = 4) it was noticed in many occasions that at least one local
search was able to (nd the global minimum. The incorporation of local search, therefore, enhanced
the robustness of the DE-type methods. Further research is underway in developing a hybrid DE
global optimization method to (nd even more robust and e.cient DE algorithms.

Appendix A.

Algorithm Selection Reproduction Child Per Acceptance Local Added
of parents generation mandatory phase features

CRS1 Random: n + 1 Mutation 1 No No None
per trial point

CRS2 Random: n Mutation 1 No No None
per trial point
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CRS3 Random: n Mutation 1 No No None
per trial point

CRS4 Random: n Mutation 1 No Yes: None
per trial point �-distribution

CRS5 Random: n Mutation 1 No Yes: None
per trial point local descend

CRS6 Random: 2 Interpolation 1 No Yes: None
per trial point �-distribution

CRSI Random: 2 Interpolation 1 No No None
per trial point

DE1=DE2 Random: 3 per Mutation and N No No None
each target point crossover

DE1 Random: 3 per Mutation and N No No m2 of Sa

each target point crossover replace
m2 in S

DE2/DE2 Random: 3 per Mutation and N No DS m2 of Sa

each target point crossover replace
m2 in S

GA1 Tournament: 2 Mutation and m1 Yes No None
per pair children crossover

GA2 Random: n + 2 Mutation, m1 Yes No None
per pair children crossover

and learned
crossover

Appendix B.

1. Rastrigin (RG5): f(x) = 10n +
∑n

i=1 [x2
i − 10 cos(2)xi)]; xi ∈ [ − 5:12; 5:12], n = 5;

f(x) = 0; x∗ = (0; 0; : : : ; 0).

2. Schwefel (SF10): f(x) = − ∑n
i=1 xi sin(

√|xi|); xi ∈ [ − 500; 500], n = 10;
f(x) = −418:9829 × n; x∗ = (s; s; : : : ; s), s = 420:97.

3. Griewank (GR10): f(x) = 1 +
∑n

i=1 x2
i =4000 − +n

i cos( xi√
i
); xi ∈ [ − 500; 500], n = 10;

f(x) = 0; x∗ = (0; 0; : : : ; 0).

4. Rosenbrock (ER10): f(x) =
∑n−1

i=1 [100(xi+1 − xi)2 + (xi − 1)2]; xi ∈ [ − 500; 500],
n = 10; f(x) = 0; x∗ = (1; 1; : : : ; 1).
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5. Modi(ed Langerman (ML5): f(x) = −∑5
j=1 cj cos(dj=)) exp(−)dj); xi ∈ [0; 10], n = 5;

dj =
∑n

i=1(xi − aji)2,
f(x∗) = −0:965000;

x∗ = (8:074; 8:777; 3:467; 1:867; 6:708).

cj j →
0.806,0.517,0.1,0.908,0.965

j ↓ aji i →
9.681, 0.667, 4.783, 9.095, 3.517
9.400, 2.041, 3.788, 7.931, 2.882
8.025, 9.152, 5.114, 7.621, 4.564
2.196, 0.415, 5.649, 6.979, 9.510
8.074, 8.777, 3.467, 1.867, 6.708

6. Shekel’s Foxholes (FX 5): f(x) = − ∑30
j=1

1
cj+

∑n
i=1(xi−aji)

2; xi ∈ [0; 10], n = 5;
f(x∗) = −10:4056;
x∗ = (8:025; 9:152; 5:114; 7:621; 4:564).

j ↓ cj aji i →
0.806 9.681, 0.667, 4.783, 9.095, 3.517
0.517 9.400, 2.041, 3.788, 7.931, 2.882
0.100 8.025, 9.152, 5.114, 7.621, 4.564
0.908 2.196, 0.415, 5.649, 6.979, 9.510
0.965 8.074, 8.777, 3.467, 1.863, 6.708
0.669 7.650, 5.658, 0.720, 2.764, 3.278
0.524 1.256, 3.605, 8.623, 6.905, 4.584
0.902 8.314, 2.261, 4.224, 1.781, 4.124
0.531 0.226, 8.858, 1.420, 0.945, 1.622
0.876 7.305, 2.228, 1.242, 5.928, 9.133
0.462 0.652, 7.027, 0.508, 4.876, 8.807
0.491 2.699, 3.516, 5.874, 4.119, 4.461
0.463 8.327, 3.897, 2.017, 9.570, 9.825
0.714 2.132, 7.006, 7.136, 2.641, 1.882
0.352 4.707, 5.579, 4.080, 0.581, 9.698
0.869 8.304, 7.559, 8.567, 0.322, 7.128
0.813 8.632, 4.409, 4.832, 5.768, 7.050



1724 M.M. Ali, A. T.orn / Computers & Operations Research 31 (2004) 1703–1725

0.811 4.887, 9.112, 0.170, 8.967, 9.693
0.828 2.440, 6.686, 4.299, 1.007, 7.008
0.964 6.306, 8.583, 6.084, 1.138, 4.350
0.789 0.652, 2.343, 1.370, 0.821, 1.310
0.360 5.558, 1.272, 5.756, 9.857, 2.279
0.369 3.352, 7.549, 9.817, 9.437, 8.687
0.992 8.798, 0.880, 2.370, 0.168, 1.701
0.332 1.460, 8.057, 1.336, 7.217, 7.914
0.817 0.432, 8.645, 8.774, 0.249, 8.081
0.632 0.679, 2.800, 5.523, 3.049, 2.968
0.883 4.263, 1.074, 7.286, 5.599, 8.291
0.608 9.496, 4.830, 3.150, 8.270, 5.079
0.326 4.138, 2.562, 2.532, 9.661, 5.611
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