
Computers & Operations Research 39 (2012) 687–697
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/caor
A modified artificial bee colony algorithm
Wei-feng Gao �, San-yang Liu

Department of Mathematics, Xidian University, Xi’an, Shannxi 710071, PR China
a r t i c l e i n f o

Available online 25 June 2011

Keywords:

Artificial bee colony algorithm

Initial population

Solution search equation

Differential evolution
48/$ - see front matter & 2011 Elsevier Ltd. A

016/j.cor.2011.06.007

esponding author.

ail address: gaoweifeng2004@126.com (W.-f.
a b s t r a c t

Artificial bee colony algorithm (ABC) is a relatively new optimization technique which has been shown

to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC

regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired

by differential evolution (DE), we propose an improved solution search equation, which is based on that

the bee searches only around the best solution of the previous iteration to improve the exploitation.

Then, in order to make full use of and balance the exploration of the solution search equation of ABC

and the exploitation of the proposed solution search equation, we introduce a selective probability P

and get the new search mechanism. In addition, to enhance the global convergence, when producing

the initial population, both chaotic systems and opposition-based learning methods are employed. The

new search mechanism together with the proposed initialization makes up the modified ABC (MABC for

short), which excludes the probabilistic selection scheme and scout bee phase. Experiments are

conducted on a set of 28 benchmark functions. The results demonstrate good performance of MABC in

solving complex numerical optimization problems when compared with two ABC-based algorithms.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Learning from life system, people have developed many
optimization computation methods to solve complicated pro-
blems in recent decades, such as genetic algorithm (GA) inspired
by the Darwinian law of survival of the fittest [1], particle swarm
optimization (PSO) inspired by the social behavior of bird flocking
or fish schooling [2], ant colony optimization (ACO) inspired by
the foraging behavior of ant colonies [3], and biogeography-based
optimization (BBO) inspired by the migration behavior of island
species [4]. We call this kind of algorithms for scientific computa-
tion as ‘‘artificial-life computation’’ [5]. Artificial bee colony
algorithm (ABC) is such a new computation technique developed
by Karaboga [6] based on simulating the foraging behavior of
honey bee swarm. Numerical comparisons demonstrated that the
performance of ABC is competitive to other population-based
algorithms with an advantage of employing fewer control para-
meters [7–9]. Due to its simplicity and ease of implementation,
ABC has captured much attention and has been applied to solve
many practical optimization problems [10–12] since its invention
in 2005.

However, similar to other evolutionary algorithms, ABC also
faces up to some challenging problems. For example, the converg-
ence speed of ABC is typically slower than those of representative
ll rights reserved.

Gao).
population-based algorithms (e.g., differential evolution (DE) [13] and
PSO) when handling those unimodal problems [9]. What is more, ABC
can easily get trapped in the local optima when solving complex
multimodal problems [9]. The reasons are as follows. It is well known
that both exploration and exploitation are necessary for a population-
based optimization algorithm. In the optimization algorithms, the
exploration refers to the ability to investigate the various unknown
regions in the solution space to discover the global optimum. While,
the exploitation refers to the ability to apply the knowledge of the
previous good solutions to find better solutions. In practice, the
exploration and exploitation contradicts to each other. In order to
achieve good performances on problem optimizations, the two
abilities should be well balanced. While, the solution search equation
of ABC which is used to generate new candidate solutions based on
the information of previous solutions, is good at exploration but poor
at exploitation [14], which results in the above two insufficiencies.

Therefore, accelerating convergence speed and avoiding the
local optima have become two most important and appealing
goals in ABC research. A number of variant ABC algorithms have,
hence, been proposed to achieve these two goals [14–16].
However, so far, it is seen to be difficult to simultaneously achieve
both goals. For example, the chaotic ABC algorithm (CABC) in [16]
focuses on avoiding the local optima, but brings in a more extra
function evaluations in chaotic search as a result.

To achieve the both goals, inspired by DE, we propose an
improved solution search equation, which is based on that the bee
searches only around the best solution of the previous iteration to
improve the exploitation. Then, in order to make full use of and

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.06.007
mailto:gaoweifeng2004@126.com
dx.doi.org/10.1016/j.ins.2010.07.015
dx.doi.org/10.1016/j.ins.2010.07.015

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697688
balance the exploration of the solution search equation of ABC and
the exploitation of the proposed solution search equation, we
introduce a selective probability P and get the new search mechan-
ism. In addition, to enhance the global convergence, when producing
the initial population, both chaotic systems and opposition-based
learning method are employed. The new search mechanism
together with the proposed initialization makes up the modified
ABC (MABC for short), which excludes the probabilistic selection
scheme and scout bee phase. The rest of this paper is organized as
follows. Section 2 summarizes ABC. The improved ABC algorithm is
presented in Section 3. Section 4 presents and discusses the
experimental results. Finally, the conclusion is drawn in Section 5.
2. Artificial bee colony algorithm

Artificial bee colony algorithm (ABC), proposed by Karaboga in
2005 for real-parameter optimization, is a recently introduced
optimization algorithm which simulates the foraging behavior of
a bee colony [6]. ABC classifies the foraging artificial bees into
three groups, namely, employed bees, onlooker bees and scout
bees. Half of the colony consists of employed bees, and the other
half includes onlooker bees. Employed bees search the food
around the food source in their memory, meanwhile they pass
their food information to onlooker bees. Onlooker bees tend to
select good food sources from those founded by the employed
bees, then further search the foods around the selected food
source. Scout bees are translated from a few employed bees,
which abandon their food sources and search new ones.

Similar to the other population-based algorithms, ABC is an
iterative process. The units of the basic ABC can be explained as
follows:

2.1. Initialization of the population

The initial population of solutions is filled with SN number of
randomly generated n-dimensional real-valued vectors (i.e., food
sources). Let Xi ¼ fxi,1,xi,2, . . . ,xi,ng represent the ith food source in
the population, and then each food source is generated as follows:

xi,j ¼ xmin,jþrandð0,1Þðxmax,j�xmin,jÞ, ð2:1Þ

where i¼ 1,2, � � � ,SN,j¼ 1,2, � � � ,n. xmin,j and xmax,j are the lower
and upper bounds for the dimension j, respectively. These food
sources are randomly assigned to SN number of employed bees
and their fitnesses are evaluated.

2.2. Initialization of the bee phase

At this stage, each employed bee Xi generates a new food
source Vi in the neighborhood of its present position by using
solution search equation as follows:

vi,j ¼ xi,jþfi,jðxi,j�xk,jÞ, ð2:2Þ

where kAf1,2, � � � ,SNg and jAf1,2, � � � ,ng are randomly chosen
indexes; k has to be different from i; fi,j is a random number in
the range [�1, 1].

Once Vi is obtained, it will be evaluated and compared to Xi. If
the fitness of Vi is equal to or better than that of Xi, Vi will replace
Xi and become a new member of the population; otherwise Xi is
retained. In other words, a greedy selection mechanism is
employed between the old and candidate solutions.

2.3. Calculating probability values involved in probabilistic selection

After all employed bees complete their searches, they share
their information related to the nectar amounts and the positions
of their sources with the onlooker bees on the dance area. An
onlooker bee evaluates the nectar information taken from all
employed bees and chooses a food source site with a probability
related to its nectar amount. This probabilistic selection depends
on the fitness values of the solutions in the population. A fitness-
based selection scheme might be a roulette wheel, ranking based,
stochastic universal sampling, tournament selection or another
selection scheme. In basic ABC, roulette wheel selection scheme
in which each slice is proportional in size to the fitness value is
employed as follows:

pi ¼ fi

XSN

j ¼ 1

fj

,
, ð2:3Þ

where fi is the fitness value of solution i. Obviously, the higher the
fi is, the more probability that the ith food source is selected.

2.4. Onlooker bee phase

An onlooker bee evaluates the nectar information taken from all
the employed bees and selects a food source Xi depending on its
probability value pi. Once the onlooker has selected her food source
Xi, she produces a modification on Xi by using Eq. (2.2).
As in the case of the employed bees, if the modified food source
has a better or equal nectar amount than Xi, the modified food
source will replace Xi and become a new member in the population.

2.5. Scout bee phase

If a food source Xi cannot be further improved through a
predetermined number of trials limit, the food source is assumed
to be abandoned, and the corresponding employed bee becomes a
scout. The scout produces a food source randomly as follows:

xi,j ¼ xmin,jþrandð0,1Þðxmax,j�xmin,jÞ, ð2:4Þ

where j¼ 1,2, � � � ,n.

2.6. Main steps of the artificial bee colony algorithm

Based on the above explanation of initializing the algorithm
population, employed bee phase, probabilistic selection scheme,
onlooker bee phase and scout bee phase, the pseudo-code of the
ABC algorithm is given below:

Algorithm 1 (Artificial bee colony algorithm).

01: Initialize the population of solutions xi,j, i¼ 1,2 � � � SN,

j¼ 1,2 � � �n, triali ¼ 0, triali ¼ 0 is the non-improvement
number of the solution Xi, used for abandonment

02: Evaluate the population
03: cycle¼1
04: repeat

{– – Produce a new food source population for employed
bees – –}

06: for i¼ 1 to SN do
07: Produce a new food source Vi for the employed bee

of the food source Xi using (2.2) and evaluate its
quality

08: Apply a greedy selection process between Vi and Xi

and select the better one

09: If solution Xi does not improve triali ¼ trialiþ1,

otherwise triali ¼ 0
10: end for
11: Calculate the probability values pi by (2.3) for the

solutions using fitness values
{– – Produce a new food source population for onlooker
bees – –}

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697 689
12: t¼ 0,i¼ 1
13: repeat
14: if randomopi then
15: Produce a new Vi food source by (2.2) for onlooker

bee
16: Apply a greedy selection process between Vi and Xi

and select the better one

17: If solution Xi does not improve triali ¼ trialiþ1,

otherwise triali ¼ 0
18: t¼ tþ1

19: endif
20: until (t¼SN)

{– – Determine Scout – –}

21: if maxðtrialiÞ4 limit then
22: Replace Xi with a new randomly produced solution

by (2.4)
23: end if
24: Memorize the best solution achieved so far
25: cycle¼cycleþ1
26: until (cycle¼Maximum Cycle Number)

3. Modified artificial bee colony algorithm

3.1. Initial population

Population initialization is a crucial task in evolutionary algo-
rithms because it can affect the convergence speed and the quality
of the final solution. If no information about the solution is available,
then random initialization is the most commonly used method to
generate candidate solutions (initial population). Owing to the
randomness and sensitivity dependence on the initial conditions
of chaotic maps, chaotic maps have been used to initialize the
population so that the search space information can be extracted to
increase the population diversity in [16]. At the same time, accord-
ing to [17], replacing the random initialization with the opposition-
based population initialization can get better initial solutions and
then accelerate convergence speed. So this paper proposes a novel
initialization approach which employs opposition-based learning
method and chaotic systems to generate initial population. Here,
sinusoidal iterator is selected and its equation is defined as follows:

chkþ1 ¼ sinðpchkÞ,chkAð0,1Þ,k¼ 0,1,2, . . . ,K , ð3:1Þ

where k is the iteration counter and K is the preset maximum number
of chaotic iterations. The mapped variables in Eq. (3.1) can distribute
Table 1
Effect of the selective probability P on the performance of MABC.

Algorithm Sphere Rosebrock

MABC (P¼0.0) Mean 1.86e�36 3.07e�00

SD 1.46e�36 3.45e�00

MABC (P¼0.1) Mean 2.57e�35 3.04e�00

SD 2.44e�35 3.95e�00

MABC (P¼0.3) Mean 5.48e�34 1.01e�00

SD 3.87e�34 1.41e�00

MABC (P¼0.5) Mean 7.57e�33 1.67e�00

SD 3.28e�33 1.43e�00

MABC (P¼0.7) Mean 9.43e�32 6.11e�01

SD 6.67e�32 4.55e�01

MABC (P¼0.9) Mean 2.47e�30 9.55e�01

SD 2.53e�30 1.03e�00

MABC (P¼1.0) Mean 4.33e�30 1.47e�00

SD 4.21e�30 1.22e�00
in search space with ergodicity, randomness and irregularity. Based
on these operations, we propose the following algorithm to generate
initial population which can be used instead of a pure random
initialization.

Algorithm 2 (A novel initialization approach).

01: Set the maximum number of chaotic iteration KZ300,
the population size SN, and the individual counter

i¼ 1,j¼ 1
{– – chaotic systems – –}

03: for i¼1 to SN do
04: for j¼1 to n do
05: Randomly initialize variables ch0,jA ð0,1Þ, set

iteration counter k¼0
06: for k¼1 to K do
07: chkþ1,j ¼ sinðpchk,jÞ

08: end for
09: xi,j ¼ xmin,jþchk,jðxmax,j�xmin,jÞ

10: end for
11: end for

{– – Opposition-based learning method – –}

13: Set the individual counter i¼ 1,j¼ 1
14: for i¼1 to SN do
15: for j¼ 1 to n do
16: oxi,j ¼ xmin,jþxmax,j�xi,j

17: end for
18: end for
19: Selecting SN fittest individuals from set the fXðSNÞ [OXðSNÞg

as initial population.

3.2. A modified search equation

Differential evolution (DE) [13] has been shown to be a simple
yet efficient evolutionary algorithm for many optimization pro-
blems in real-world applications. It follows the general procedure
of an evolutionary algorithm. After initialization, DE enters a loop
of evolutionary operations: mutation, crossover, and selection.
There are several variant DE algorithms which are different in
that their mutation strategies are adopted differently. The follow-
ing is a mutation strategy frequently used in the literature:

DE=best=1 : Vi ¼ XbestþFðXr1�Xr2Þ, ð3:2Þ

where i¼ f1,2, � � � ,SNg and r1 and r2 are mutually different
random integer indices selected from f1,2, � � � ,SNg. F, commonly
known as scaling factor or amplification factor, is a positive real
Griewank Rastrigin NC-Rastrigin Ackley

3.28e�04 3.32e�02 0 2.88e�14

1.83e�03 1.78e�01 0 3.63e�15

2.46e�04 6.22e�02 0 3.00e�14

1.36e�03 2.41e�01 0 1.42e�15

4.00e�05 5.02e�03 0 3.12e�14

2.15e�04 7.05e�02 0 1.77e�15

0 0 0 3.59e�14

0 0 0 3.39e�15

0 0 0 4.13e�14

0 0 0 2.17e�15

3.54e�18 0 0 5.27e�14

7.28e�17 0 0 6.19e�15

6.66e�15 0 0 6.62e�14

3.44e�14 0 0 1.10e�14

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697690
number, typically less than 1.0 that controls the rate at which the
population evolves.

The best solutions in the current population are very useful
sources that can be used to improve the convergence performance.
The example is the DE/best/1, where the best solutions explored in
the history are used to direct the movement of the current
population. Based on the variant DE algorithm and the property of
ABC, the solution search equation is devised as follows:

ABC=best=1 : vi,j ¼ xbest,jþfi,jðxr1,j�xr2,jÞ, ð3:3Þ

where the indices r1 and r2 are mutually exclusive integers randomly
chosen from f1,2, � � � ,SNg, and different from the base index i; Xbest is
the best individual vector with the best fitness in the current
population and jAf1,2, . . . ,ng is randomly chosen indexes; fi,j is a
random number in the range [�1, 1]. In Eq. (2.2), the coefficient fi,j is
a uniform random number in [�1, 1] and xk,j is a random individual
Table 2
Benchmark functions used in experiments.

Function

f1ðXÞ ¼
Pn

i ¼ 1 x2
i

f2ðXÞ ¼
Pn

i ¼ 1ð106
Þ
ði�1Þ=ðn�1Þx2

i

f3ðXÞ ¼
Pn

i ¼ 1 ix2
i

f4ðXÞ ¼
Pn

i ¼ 1 jxij
ðiþ1Þ

f5ðXÞ ¼
Pn

i ¼ 1 jxijþ
Qn

i ¼ 1 jxij

f6ðXÞ ¼maxifjxij,1r irng

f7ðXÞ ¼
Pn

i ¼ 1ðbxiþ0:5cÞ2

f8ðXÞ ¼
Pn

i ¼ 1 ix4
i

f9ðXÞ ¼
Pn

i ¼ 1 ix4
i þrandom½0,1Þ

f10ðXÞ ¼
Pn�1

i ¼ 1½100ðxiþ1�x2
i Þ

2
þðxi�1Þ2�

f11ðXÞ ¼ ½x
2
i �10 cosð2pxiÞþ10�

f12ðXÞ ¼ ½y
2
i �10 cosð2pyiÞþ10�

yi ¼

xi jxijo 1
2

roundð2xiÞ

2
jxijZ

1
2

8><
>:

f13ðXÞ ¼
1

4000

Pn
i ¼ 1 x2

i �
Qn

i ¼ 1 cos
xiffiffi

i
p

� �
þ1

f14ðXÞ ¼ 418:98288727243369nn�
Pn

i ¼ 1 xi sinð
ffiffiffiffiffiffiffi
jxij
p
Þ

f15ðXÞ ¼�20 exp �0:2

ffi
1

n

Pn
i ¼ 1 x2

i

r !
�exp

1

n

Pn
i ¼ 1 cosð2pxiÞ

� �
þ20þe

f16ðXÞ ¼
p
n f10 sin2

ðpy1Þþ
Pn�1

i ¼ 1ðyi�1Þ2½1þ10 sin2
ðpyiþ1Þ�

þðyn�1Þ2gþ
Pn

i ¼ 1 uðxi,10,100,4Þ

yi ¼ 1þ 1
4 ðxiþ1Þ uxi ,a,k,m ¼

kðxi�aÞm xi 4a

0 �arxi ra

kð�xi�aÞm xi o�a

8><
>:

f17ðXÞ ¼
1

10 fsin2
ðpx1Þþ

Pn�1
i ¼ 1ðxi�1Þ2½1þsin2

ð3pxiþ1Þ�

þðxn�1Þ2½1þsin2
ð2pxiþ1Þ�gþ

Pn
i ¼ 1 uðxi ,5,100,4Þ

f18ðXÞ ¼
Pn

i ¼ 1 jxi � sinðxiÞþ0:1 � xij

f19ðXÞ ¼
Pn�1

i ¼ 1ðxi�1Þ2½1þsin2
ð3pxiþ1Þ�þsin2

ð3px1Þ

þjxn�1j½1þsin2
ð3pxnÞ�

f20ðXÞ ¼
PD

i ¼ 1ð
Pkmax

k ¼ 0½a
k cosð2pbkðxiþ0:5ÞÞ�Þ�D

Pkmax

k ¼ 0½a
k

cosð2pbk0:5Þ�,a¼ 0:5,b¼ 3,kmax ¼ 20

f21ðXÞ ¼ 0:5þsin2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 x2

i

q
Þ�0:5

ð1þ0:001ð
Pn

i ¼ 1 x2
i ÞÞ

2

f22ðXÞ ¼
1
n

Pn
i ¼ 1ðx

4
i �16x2

i þ5xiÞ

f23ðXÞ ¼�
Pn

i ¼ 1 sinðxiÞ sin20 i� x2
i

p

 !

f24ðXÞ ¼
Pn

i ¼ 1 z2
i Z ¼ X�O

f25ðXÞ ¼ ½z
2
i �10 cosð2pziÞþ10� Z ¼ X�O

f26ðXÞ ¼
1

4000

Pn
i ¼ 1 z2

i �
Qn

i ¼ 1 cosð ziffi
i
p Þþ1 Z ¼ X�O

f27ðXÞ ¼�20 exp �0:2

ffi
1

n

Pn
i ¼ 1 z2

i

r !
�exp

1

n

Pn
i ¼ 1 cosð2pziÞ

� �
Z ¼ X�O

f28ðXÞ ¼
Pn

i ¼ 1 jzi � sinðziÞþ0:1 � zij Z ¼ X�O
in the population. Therefore, the solution search dominated by Eq.
(2.2) is random enough for exploration. In other words, the solution
search equation described by Eq. (2.2) is good at exploration but poor
at exploitation. However, according to Eq. (3.3), ABC/best/1 can drive
the new candidate solution only around the best solution of the
previous iteration. Therefore, the proposed solution search equation
described by Eq. (3.3) can increase the exploitation of ABC.
3.3. The proposed approach

From the above explanation, it is clear that ABC/best/1 has a
good capacity of the exploitation. Unfortunately, ABC/best/1 can
reduce the exploration of ABC. If all bees produce new food
sources using (3.3), the algorithm can easily get trapped in the
local optima when solving complex multimodal problems. In
other words, ABC which is good at exploration but poor at
Search range Min

[�100,100]n 0

[�100,100]n 0

[�10,10]n 0

[�10,10]n 0

[�10,10]n 0

[�100,100]n 0

[�100,100]n 0

[�1.28,1.28]n 0

[�1.28,1.28]n 0

[�10,10]n 0

[�5.12,5.12]n 0

[�5.12,5.12]n 0

[�600,600]n 0

[�500,500]n 0

[�32,32]n 0

[�50,50]n 0

[�50,50]n 0

[�10,10]n 0

[�10,10]n 0

[�0.5,0.5]n 0

[�100,100]n 0

[�5,5]n
�78.33236

½0,p�n �99.2784 for n¼100

[�100,100]n 0

[�5.12,5.12]n 0

[�600,600]n 0

[�32,32]n 0

[�10,10]n 0

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697 691
exploitation results in a slow convergence. While ABC/best/1,
which is good at exploitation but poor at exploration, cannot
avoid premature convergence. To address this contradiction, we
propose the new search mechanism which introduces the selec-
tive probability P to balance the exploration of the solution search
equation (2.2) and the exploitation of the modified solution
search equation (3.3). The new search mechanism with
Algorithm 2 makes up MABC. Based on the above explanation,
the pseudo-code of MABC is given below:

Algorithm 3 (Modified artificial bee colony algorithm).

01: Set the population size SN, give the maximum number of
function evaluations, Max:FE

02: Perform Algorithm 2 to create an initial population

fXiji¼ 1,2, � � � ,SNg, calculate the function values of the

population ffiji¼ 1,2, � � � ,SNg

03: While (stopping criterion is not met, namely
FEoMax:FE) do

04: for i¼ 1 to SN do
{– – Produce a new food source using the new search
mechanism– –}

06: Choose Xr1,Xr2 randomly from the current population,
The indices r1,r2 are mutually exclusive integers
Table 3
Best, worst, median, mean and standard deviation values obtained by ABC and MABC th

Fun Dim Best Worst

f1 30 ABC 2.02e�10 1.07e�09

MABC 1.69e�32 2.48e�31

60 ABC 3.49e�10 3.27e�09

MABC 9.29e�30 1.55e�28

100 ABC 3.87e�10 3.11e�09

MABC 4.65e�28 2.63e�27

f2 30 ABC 2.65e�07 1.32e�05

MABC 2.55e�29 1.99e�27

60 ABC 2.14e�07 6.25e�06

MABC 3.65e�26 8.69e�25

100 ABC 4.00e�07 6.46e�06

MABC 3.17e�24 3.73e�24

f3 30 ABC 9.03e�12 4.62e�11

MABC 3.57e�33 5.29e�32

60 ABC 7.95e�11 3.17e�10

MABC 5.61e�30 3.29e�29

100 ABC 2.82e�10 2.85e�09

MABC 1.50e�28 8.74e�28

f4 30 ABC 1.34e�18 4.29e�16

MABC 1.26e�74 1.34e�68

60 ABC 4.88e�11 7.62e�10

MABC 5.16e�65 9.54e�62

100 ABC 2.52e�08 2.05e�06

MABC 7.76e�52 8.74e�48

f5 30 ABC 1.28e�06 2.63e�06

MABC 8.41e�18 4.09e�17

60 ABC 5.77e�06 9.29e�06

MABC 5.30e�16 8.72e�16

100 ABC 1.28e�06 1.59e�05

MABC 2.08e�15 6.63e�15

f6 30 ABC 1.30eþ01 2.07eþ01

MABC 9.16e�00 1.42eþ01

60 ABC 3.79eþ01 4.65eþ01

MABC 2.92eþ01 4.03eþ01

100 ABC 5.30eþ01 6.14eþ01

MABC 5.70eþ01 6.23eþ01

f7 30 ABC 0 0

MABC 0 0

60 ABC 0 0

MABC 0 0

100 ABC 0 0

MABC 0 0
randomly chosen from the range ½1,SN�, which are also
different from the index i

07: Randomly choose j from f1,2, � � � ,ng and produce

fi,jA ½�1,1�

08: Generate a new food source Vi according to

vi,j ¼ xbest,jþfi,jðxr1,j�xr2,jÞ

09: if f ðViÞo f ðXiÞ then
10: Xi ¼ Vi

11: else then
12: if randð0,1ÞoP then
14: Randomly choose j from f1,2, � � � ,ng,

kAf1,2, � � � ,SNg which has to be different from i

and produce fi,jA ½�1,1�

15: Generate a new food source Vi according to

vi,j ¼ xi,jþfi,jðxi,j�xk,jÞ

16: if f ðViÞo f ðXiÞ then
17: Xi ¼ Vi

18: endif
19: end if
20: end if
21: end for
22: end while (FE¼Max:FE)
rough 30 independent runs on function from f1 to f7.

Median Mean SD Significant

2.02e�10 5.21e�10 2.46e�10

1.80e�32 9.43e�32 6.67e�32 þ

3.27e�09 1.09e�09 9.37e�10

4.68e�29 6.03e�29 4.31e�29 þ

3.87e�10 1.64e�09 9.85e�10

1.86e�27 1.43e�27 8.12e�28 þ

7.71e�07 4.10e�06 3.85e�06

1.99e�27 3.66e�28 5.96e�28 þ

4.53e�06 2.31e�06 2.18e�06

3.65e�26 3.51e�25 2.72e�25 þ

1.37e�06 1.79e�06 1.63e�06

3.17e�24 3.52e�24 2.47e�25 þ

1.56e�11 2.22e�11 1.14e�11

4.62e�33 2.10e�32 1.56e�32 þ

3.17e�10 1.89e�10 9.14e�11

6.24e�30 1.39e�29 8.84e�30 þ

4.21e�10 1.25e�09 9.75e�10

1.72e�28 4.46e�28 2.08e�28 þ

1.82e�16 1.45e�16 1.55e�16

7.02e�71 2.70e�69 5.38e�69 þ

4.88e�11 2.14e�10 2.75e�10

3.59e�64 3.00e�62 3.87e�62 þ

6.75e�08 4.83e�07 7.88e�07

8.01e�52 1.92e�48 3.42e�48 þ

1.28e�06 1.83e�06 4.80e�07

8.41e�18 2.40e�17 9.02e�18 þ

6.81e�06 7.23e�06 1.28e�06

8.33e�16 6.96e�16 1.20e�16 þ

1.29e�05 1.30e�05 1.93e�06

6.46e�15 4.41e�15 1.50e�15 þ

1.52eþ01 1.80eþ01 2.25e�00

1.26eþ01 1.02eþ01 1.49e�00 þ

4.18eþ01 4.22eþ01 2.73e�00

3.80eþ01 3.77eþ01 3.14e�00 þ

5.30eþ01 5.76eþ01 2.74e�00

5.76eþ01 5.98eþ01 1.60e�00 .

0 0 0

0 0 0 NA

0 0 0

0 0 0 NA

0 0 0

0 0 0 NA

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697692
3.4. Adjusting the selective probability P
Note that the parameter P plays an important role in balancing the
exploration and exploitation of the candidate solution search. When P

takes 0, only Eq. (3.3) is at work. When P increases from 0 to 1, the
exploration of Eq. (2.2) will also increase correspondingly. However, P

should not be too large because the large value of P might weaken the
exploitation of the algorithm. Therefore the selective probability
parameter P needs to be tuned. In this section, six different kinds of
thirty-dimensional (30-D) test functions are used to investigate the
impact of this parameter. They are the Sphere, Rosenbrock, Griewank,
Rastrigin, NC-Rastrigin and Ackley functions [15] as defined in
Section 4. MABC runs 30 times on each of these functions, and the
mean and standard deviation values of the final results are pre-
sented in Table 1. As all test functions are minimization problems,
the smaller the final result, the better it is. From Table 1, we can
observe that P can influence the results. When P is 0, we obtain a
faster convergence velocity and better results on the Sphere and
Ackley functions. For the other four test functions, better results are
obtained when P is around 0.7. At the same time, P has a smaller
effect on the Sphere and Ackley functions than for the other four test
functions. Hence, in our experiments, the selective probability P is
Table 4
Best, worst, median, mean and standard deviation values obtained by ABC and MABC

Fun Dim Best Worst

f8 30 ABC 1.26e�29 1.86e�28

MABC 8.80e�69 5.97e�67

60 ABC 4.90e�28 2.00e�26

MABC 4.49e�64 2.37e�61

100 ABC 1.31e�26 1.41e�25

MABC 3.99e�61 1.56e�59

f9 30 ABC 6.03e�02 1.27e�01

MABC 1.84e�02 4.58e�02

60 ABC 1.87e�01 2.65e�01

MABC 9.20e�02 1.33e�01

100 ABC 3.96e�01 4.92e�01

MABC 1.64e�01 2.56e�01

f10 30 ABC 2.12e�02 2.20e�00

MABC 4.09e�02 1.95e�00

60 ABC 1.88e�01 5.75e�00

MABC 2.17e�01 5.26e�00

100 ABC 5.48e�01 3.94e�00

MABC 5.13e�01 7.77e�00

f11 30 ABC 3.58e�10 1.46e�01

MABC 0 0

60 ABC 3.21e�10 1.99e�00

MABC 0 0

100 ABC 5.40e�09 1.99e�00

MABC 0 0

f12 30 ABC 8.96e�10 1.00e�00

MABC 0 0

60 ABC 2.17e�07 3.025e�00

MABC 0 0

100 ABC 2.00e�00 7.21e�00

MABC 0 0

f13 30 ABC 4.74e�12 1.35e�07

MABC 0 0

60 ABC 7.99e�12 1.05e�09

MABC 0 0

100 ABC 6.29e�13 3.05e�08

MABC 0 0

f14 30 ABC 1.54e�06 2.37eþ02

MABC �1.81e�12 0

60 ABC 3.55eþ02 7.69eþ02

MABC 2.91e�11 3.63e�11

100 ABC 7.81eþ02 1.55eþ03

MABC 1.09e�10 1.23e�10
set at 0.7 for all test functions. Above all, the proposed approach is
able to reach the balance between exploration and exploitation.
4. Experimental studies on function optimization problems

4.1. Benchmark functions and parameter settings

In this section, MABC is applied to minimize a set of 26
scalable benchmark functions of dimensions D¼30, 60 or 100
[9,14,17] and a set of two functions of higher dimension D¼100,
200 or 300 [17], as shown in Table 2.

Summarized in Table 2 are the 28 scalable benchmark func-
tions. f1�f6 and f8 are continuous unimodal functions. f7 is a
discontinuous step function, and f9 is a noisy quartic function. f10

is the Rosenbrock function which is unimodal for D¼2 and 3 but
may have multiple minima in high dimension cases [18]. f112f23

are multimodal and the number of their local minima increases
exponentially with the problem dimension. f242f28 are shifted
functions and O is a randomly generated shift vector located in
search range. In addition, f14 is the only bound-constrained
function investigated in this paper.
through 30 independent runs on function from f8 to f14.

Median Mean SD Significant

1.64e�29 5.51e�29 6.70e�29

1.01e�68 1.45e�67 2.28e�67 þ

4.90e�28 6.53e�27 7.23e�27

2.37e�61 5.00e�62 9.38e�62 þ

1.34e�26 5.65e�26 4.90e�26

3.99e�61 5.72e�60 5.32e�60 þ

7.67e�02 8.74e�02 1.77e�02

4.48e�02 3.71e�02 8.53e�03 þ

2.43e�01 2.39e�01 2.86e�02

1.21e�01 1.14e�01 1.16e�02 þ

4.70e�01 4.55e�01 3.20e�02

2.56e�01 2.31e�01 2.79e�02 þ

5.56e�01 4.23e�01 4.34e�01

2.34e�01 6.11e�01 4.55e�01 .

1.80e�00 1.86e�00 1.36e�00

1.30e�00 1.51e�00 1.34e�00 þ

6.33e�01 1.59e�00 1.23e�00

6.71e�01 1.98e�00 1.30e�00 .

5.50e�10 4.81e�03 2.57e�02

0 0 0 þ

1.28e�05 3.71e�01 5.97e�01

0 0 0 þ

1.99e�00 1.10e�00 8.21e�01

0 0 0 þ

1.77e�08 1.12e�01 2.97e�01

0 0 0 þ

1.09e�00 1.47e�00 9.47e�01

0 0 0 þ

5.02e�00 4.74e�00 2.01e�00

0 0 0 þ

1.77e�08 1.61e�08 3.99e�08

0 0 0 þ

1.45e�11 1.39e�10 3.10e�10

0 0 0 þ

1.01e�10 2.01e�09 1.32e�09

0 0 0 þ

3.76e�01 8.86eþ01 8.62eþ01

0 �1.21e�13 4.53e�13 þ

7.69eþ02 5.40eþ02 1.41eþ02

2.91e�11 3.56e�11 2.18e�12 þ

1.51eþ03 1.29eþ03 2.23eþ02

1.16e�10 1.19e�10 4.06e�12 þ

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697 693
The set of experiments tested on 28 numerical benchmark
function are performed to compare the performance of MABC
with that of ABC. In all simulations, as the number of optimization
parameters increases, we set the maximum number of function
evaluations to be 150,000, 300,000 and 500,000 for each function
(the population size is 150, namely, SN¼75), respectively. All
results reported in this section are obtained based on 30
independent runs.

4.2. Experimental results

The performance on the solution accuracy of ABC is compared
with that of MABC. The results are shown in Tables 3–6 in terms
of the best, worst, median, mean and standard deviation of the
solutions obtained in the 30 independent runs by each algorithm.
Fig. 1 graphically presents the comparison in terms of conver-
gence characteristics of the evolutionary processes in solving the
eight different problems.

An interesting result is that the two ABC-based algorithms
have most reliably found the minimum of f7. It is a region rather
than a point in f7 that is the optimum. Hence, this problem may
relatively be easy to solve with a 100% success rate. Important
Table 5
Best, worst, median, mean and standard deviation values obtained by ABC and MABC

Fun Dim Best Worst

f15 30 ABC 2.26e�06 8.32e�06

MABC 3.64e�14 4.35e�14

60 ABC 2.44e�06 1.57e�05

MABC 1.14e�13 1.57e�13

100 ABC 5.12e�06 1.38e�05

MABC 3.27e�13 3.98e�13

f16 30 ABC 7.83e�12 1.93e�11

MABC 1.57e�32 2.73e�32

60 ABC 2.64e�11 9.54e�11

MABC 1.49e�31 1.17e�30

100 ABC 3.71e�11 1.88e�10

MABC 1.05e�30 3.12e�30

f17 30 ABC 3.85e�10 1.53e�09

MABC 5.91e�32 4.47e�31

60 ABC 9.13e�10 7.83e�09

MABC 1.84e�29 7.44e�29

100 ABC 2.43e�11 2.35e�10

MABC 1.07e�28 2.95e�28

f18 30 ABC 2.99e�05 1.05e�04

MABC 3.74e�18 6.54e�16

60 ABC 2.18e�04 1.24e�03

MABC 2.55e�16 1.90e�15

100 ABC 7.13e�04 1.27e�02

MABC 2.38e�15 9.68e�15

f19 30 ABC 1.11e�10 9.73e�10

MABC 1.34e�31 2.08e�31

60 ABC 9.00e�11 4.52e�09

MABC 9.48e�31 8.80e�30

100 ABC 1.68e�10 3.50e�09

MABC 4.02e�29 1.56e�28

f20 30 ABC 1.38e�01 1.62e�01

MABC 0 0

60 ABC 1.87e�01 3.51e�01

MABC 0 1.42e�14

100 ABC 6.66e�00 7.48e�00

4.26e�14 5.68e�14 4.26e�14

f21 30 ABC 4.147e�01 4.598e�01

MABC 2.277e�01 3.455e�01

60 ABC 4.960e�01 4.976e�01

MABC 4.796e�01 4.903e�01

100 ABC 4.996e�01 4.998e�01

MABC 4.988e�01 4.992e�01
observations about the convergence rate and reliability of differ-
ent algorithms can be made from the results presented in Fig. 1
and Tables 3–6. These results suggest that the convergence rate of
MABC is better than ABC on the most test functions. In particular,
MABC can find optimal solutions on functions f112f13, f25, f26 and
f20, f24 with D¼30. MABC offers the higher accuracy on almost all
the functions except functions f6 with D¼100 and f10 with D¼30,
100. In the case of functions f6 with D¼100 and f10 with D¼30, 100,
simulation results show that the convergence rate of MABC is worse
than ABC. While, as the results obtained by MABC are of the same
order of magnitude as the results by ABC on these two functions, the
superiority of ABC to MABC is not very obvious in terms of the best,
worst, median, mean and standard deviation of the solutions. In a
word, the superiority in terms of search ability and efficiency of
MABC should be attributed to an appropriate balance between
exploration and exploitation.

In the 9th columns of Tables 3–6, we report the statistical
significance level of the difference of the means of the two
algorithms. Note that here ‘þ ’ indicates the t value is signifi-
cant at a 0.05 level of significance by two-tailed test, ‘.’ stands
for the difference of means is not statistically significant and
‘NA’ means not applicable, covering cases for which the two
through 30 independent runs on function from f15 to f21.

Median Mean SD Significant

7.17e�06 4.83e�06 2.12e�06

3.99e�14 4.13e�14 2.17e�15 þ

2.44e�06 7.79e�06 3.63e�06

1.32e�13 1.37e�13 1.24e�14 þ

5.94e�06 1.02e�05 2.92e�06

3.27e�13 3.56e�13 2.29e�14 þ

1.31e�11 1.39e�11 3.82e�12

1.57e�32 1.90e�32 3.70e�33 þ

2.64e�11 4.98e�11 2.69e�11

9.50e�31 6.19e�31 3.62e�31 þ

1.24e�10 9.50e�11 5.34e�11

1.05e�30 1.89e�30 8.42e�31 þ

7.63e�10 1.06e�09 4.24e�10

1.12e�31 2.23e�31 1.46e�31 þ

6.41e�09 4.42e�09 2.44e�09

4.50e�29 3.80e�29 1.87e�29 þ

6.85e�11 1.11e�10 7.39e�11

1.40e�28 1.81e�28 6.44e�29 þ

1.05e�04 7.66e�05 2.76e�05

1.48e�17 1.58e�16 2.48e�16 þ

3.25e�04 5.78e�04 3.51e�04

4.45e�16 8.20e�16 4.69e�16 þ

7.13e�04 7.62e�03 5.10e�03

7.76e�15 5.83e�15 1.97e�15 þ

1.11e�10 7.34e�10 3.26e�10

1.34e�31 1.48e�31 2.30e�32 þ

7.00e�10 1.63e�09 1.60e�09

3.35e�30 4.08e�30 2.58e�30 þ

3.50e�09 2.42e�09 1.24e�09

1.31e�28 8.49e�29 3.57e�29 þ

1.39e�01 1.46e�01 1.09e�02

0 0 0 þ

2.93e�01 2.77e�01 6.77e�02

7.10e�15 9.94e�15 5.68e�15 þ

7.26e�00 7.07e�00 4.08e�00

5.21e�14 6.69e�15 þ

4.524e�01 4.413e�01 1.81e�02

3.121e�01 2.952e�01 3.17e�02 þ

4.974e�01 4.971e�01 5.90e�04

4.850e�01 4.840e�01 3.62e�03 þ

4.998e�01 4.997e�01 4.51e�05

4.991e�01 4.990e�01 1.75e�04 þ

Table 6
Best, worst, median, mean and standard deviation values obtained by ABC and MABC through 30 independent runs on function f22 to f28.

Fun Dim Best Worst Median Mean SD Significant

f22 100 ABC �77.8713 �77.3299 �77.8523 �77.5964 2.23e�01

MABC �78.3323 �78.3323 �78.3323 �78.3323 2.06e�07 þ

200 ABC �77.3471 �77.0723 �77.3471 �77.2602 9.93e�02

MABC �78.3323 �78.3323 �78.3323 �78.3323 2.40e�07 þ

300 ABC �77.6555 �77.2090 �77.4704 �77.4076 1.37e�01

MABC �78.3323 �78.3323 �78.3323 �78.3323 1.84e�08 þ

f23 100 ABC �84.5683 �82.8617 �82.8617 �83.6626 6.42e�01

MABC �91.8149 �89.7489 �89.7489 �90.7238 5.03e�01 þ

200 ABC �164.7125 �162.6145 �164.0683 �164.0177 7.32e�01

MABC �176.2015 �172.9625 �176.2015 �174.3186 9.91e�01 þ

300 ABC �251.3510 �246.8869 �249.5962 �249.4527 1.23e�00

MABC �264.3302 �262.2419 �263.2270 �263.3121 7.14e�01 þ

f24 30 ABC 8.66e�10 2.53e�09 1.49e�09 1.55e�09 5.54e�10

MABC 0 0 0 0 0 þ

60 ABC 2.18e�09 1.13e�08 2.61e�09 4.25e�09 3.54e�09

MABC 7.88e�31 1.27e�28 7.29e�30 5.61e�29 4.18e�29 þ

100 ABC 2.63e�09 1.11e�08 4.05e�09 6.63e�09 3.39e�09

MABC 5.15e�28 3.20e�27 1.21e�27 1.44e�27 9.16e�28 þ

f25 30 ABC 1.92e�09 9.95e�01 1.35e�07 1.49e�01 3.55e�01

MABC 0 0 0 0 0 þ

60 ABC 1.17e�08 3.01e�00 9.95e�01 1.08e�00 8.64e�01

MABC 0 0 0 0 0 þ

100 ABC 1.53e�00 6.14e�00 6.06e�00 4.55e�00 1.92e�00

MABC 0 0 0 0 0 þ

f26 30 ABC 4.45e�10 9.92e�03 5.88e�09 4.93e�04 2.25e�03

MABC 0 0 0 0 0 þ

60 ABC 4.13e�10 1.36e�07 1.32e�09 1.28e�08 2.91e�08

MABC 0 0 0 0 0 þ

100 ABC 5.13e�10 5.57e�08 3.84e�09 8.49e�09 1.33e�08

MABC 0 0 0 0 0 þ

f27 30 ABC 1.81e�05 1.82e�04 1.82e�04 9.73e�05 5.69e�05

MABC 4.35e�14 5.77e�14 4.35e�14 4.92e�14 5.31e�15 þ

60 ABC 6.21e�05 1.83e�04 9.75e�05 1.11e�04 3.97e�05

MABC 1.60e�13 2.53e�13 2.10e�13 2.00e�13 3.07e�14 þ

100 ABC 1.31e�04 5.87e�04 5.11e�04 3.24e�04 1.90e�04

MABC 4.20e�13 6.51e�13 5.26e�13 5.33e�13 7.58e�14 þ

f28 30 ABC 7.63e�05 1.72e�03 7.63e�05 5.89e�04 6.22e�04

MABC 6.24e�17 2.91e�16 2.91e�16 1.38e�16 8.11e�17 þ

60 ABC 2.10e�03 1.12e�02 9.56e�03 6.81e�03 3.53e�03

MABC 3.46e�16 1.78e�15 4.87e�16 9.71e�16 5.70e�16 þ

100 ABC 8.60e�04 5.04e�02 5.04e�02 2.64e�02 2.00e�02

MABC 1.28e�15 5.39e�15 1.28e�15 3.01e�15 1.39e�15 þ

Table 7
Comparison between MABC and ABC on optimizing six benchmark functions.

Function Dim GABC MABC

Max.FE Mean SD Max.FE Mean SD

Schaffer 30 4.0eþ05 2.81e�01 9.12e�02 4.0eþ05 2.56e�01 4.65e�02

60 4.0eþ05 4.77e�01 8.04e�03 4.0eþ05 4.68e�01 7.40e�03

Rosenbrock 30 4.0eþ05 7.93e�01 1.36e�00 4.0eþ05 1.73e�01 1.61e�01

60 4.0eþ05 1.90e�00 1.97e�00 4.0eþ05 3.32e�01 2.11e�01

Sphere 30 4.0eþ05 4.17e�16 7.36e�17 1.5eþ05 9.43e�32 6.67e�32

60 4.0eþ05 1.43e�15 1.37e�16 3.0eþ05 6.03e�29 4.31e�29

Griewank 30 4.0eþ05 2.96e�17 4.99e�17 1.5eþ05 0 0

60 4.0eþ05 7.54e�16 4.12e�16 3.0eþ05 0 0

Rastrigin 30 4.0eþ05 1.32e�14 2.44e�14 1.5eþ05 0 0

60 4.0eþ05 3.52e�13 1.24e�13 3.0eþ05 0 0

Ackley 30 4.0eþ05 3.21e�14 3.25e�15 4.0eþ05 2.98e�14 2.26e�15

60 4.0eþ05 1.00e�13 6.08e�15 4.0eþ05 6.73e�14 5.91e�15

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697694
algorithms achieve the same accuracy results. It also clearly
indicates that the proposed MABC is superior to ABC on almost
all the functions.
In Table 7, MABC is further compared with Gbest-guided
artificial bee colony algorithm (GABC) based on its results
reported in the literature [14]. MABC follows the parameter

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697 695
settings in the original paper of GABC [14]. It is clear that MABC
works better in all cases and achieves better performance
than GABC.

Summarizing the earlier statements, the ability of MABC is
that it can prevent bees from falling into the local minimum,
reduce evolution process significantly and more efficiently (con-
verges faster), compute with more efficiency, and improve bees’
searching abilities for ABC.
0 2 4 6 8 10 12 14 16
x 104

10−20

10−15

10−10

10−5

100

105

FE

fit
ne

ss

f13 function with D = 30

ABC
MABC

fit
ne

ss

0 2 4 6 8 10 12 14 16
x 104

0.25

0.3

0.35

0.4

0.45

0.5

FE

fit
ne

ss

f21 function with D = 30
fit

ne
ss

0 0.5 1 1.5 2 2.5 3 3.5

x 105

10−15

10−10

10−5

100

105

FE

fit
ne

ss

f11 function with D = 60

fit
ne

ss

0 1 2 3 4 5 6
x 105

10−15

10−10

10−5

100

105

FE

fit
ne

ss

f18 function with D = 100

fit
ne

ss

ABC
MABC

ABC
MABC

ABC
MABC

Fig. 1. Convergence performance of the diff
4.3. Effects of each modification on the performance of MABC

In order to analyze the modifications respectively, we call the
basic ABC with the proposed initialization as ABC1, and the
random initialization with the proposed search mechanism
(i.e., MABC without the proposed initialization) as ABC2. We
compare the convergence performance of the different ABCs on
the four test functions to see that how much the initialization and
0 2 4 6 8 10 12 14 16
x 104

10−15

10−10

10−5

100

105

FE

f20 function with D = 30

0 0.5 1 1.5 2 2.5 3 3.5
x 105

10−30

10−25

10−20

10−15

10−10

10−5

100

105

1010

FE

f1 function with D = 60

0 0.5 1 1.5 2 2.5 3 3.5

x 105

10−15

10−10

10−5

100

105

FE

f12 function with D = 60

0 1 2 3 4 5 6
x 105

10−30

10−25

10−20

10−15

10−10

10−5

100

105

FE

f19 function with D = 100

ABC
MABC

ABC
MABC

ABC
MABC

ABC
MABC

erent ABCs on the eight test functions.

0 2 4 6 8 10 12 14 16
x 104

10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

105

FE

fit
ne

ss

function f1 with D = 30

ABC
ABC1
ABC2
MABC

0 2 4 6 8 10 12 14 16
x 104FE

0 2 4 6 8 10 12 14 16
x 104FE

0 2 4 6 8 10 12 14 16
x 104FE

function f3 with D = 30

10−15

10−10

10−5

100

105

fit
ne

ss

10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

105

fit
ne

ss

10−2

10−4

10−6

10−8

10−10

10−12

10−14

100

102

fit
ne

ss

function f11 with D = 30 function f15 with D = 30

ABC
ABC1
ABC2
MABC

ABC
ABC1
ABC2
MABC

ABC
ABC1
ABC2
MABC

Fig. 2. Convergence performance of the different ABCs on the four test functions.

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697696
the search mechanism make contribution to improving the
performance of the algorithm respectively. The results are pre-
sented in Fig. 2. It can be observed that, ABC1 and ABC2 are
superior to ABC, which implies that both the initialization and the
search mechanism have positive effect on the performance of the
algorithm. Especially, ABC2 greatly outperforms ABC. On the other
hand, the performance comparisons of ABC2 and MABC are not so
apparent as those of ABC1 and MABC, which means that the
search mechanism plays a pivotal role in the proposed algorithm.
However, though the contribution of the initialization is far less
than the search mechanism, the comparisons of MABC and ABC2,
ABC and ABC1 show the initialization is at work.
5. Conclusion

In this paper, we have developed a novel optimization algo-
rithm, called MABC, through introducing the modified solution
search equation to ABC and proposing a new framework without
probabilistic selection scheme and scout bee phase. In addition,
the initial population is generated by combining chaotic systems
with opposition-based learning method to enhance the global
convergence. The experimental results tested on 28 benchmark
functions show that MABC outperforms ABC and MABC. As a
consequence, MABC may be a promising and viable tool to deal
with complex numerical optimization problems. It is desirable to
further apply MABC to solving those more complex real-world
continuous optimization problems, such as clustering, data
mining, design and optimization of communication networks.
The future work includes the studies on how to extend MABC to
handle those combinatorial optimization problems, such as flow
shop scheduling problem, vehicle routing problem and traveling
salesman problem.
Acknowledgments

This work is supported by National Nature Science Foundation
of China (No. 60974082), Fundamental Research Funds for the
Central Universities (No. JY10000970006, No. K50510700004) and
Foundation of State Key Lab. of Integrated Services Networks of
China.
References

[1] Tang KS, Man KF, Kwong S, He Q. Genetic algorithms and their applications.
IEEE Signal Processing Magazine 1996;13:22–37.

[2] Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE international
conference on neural networks; 1995. p. 1942–8.

[3] Dorigo M, Stutzle T. Ant colony optimization. Cambridge: MA MIT Press;
2004.

[4] Simon D. Biogeography-based optimization. IEEE Transaction on Evolutionary
Computation 2008;12:702–13.

[5] Wang DW. Colony location algorithm for assignment problems. Journal of
Control Theory and Applications 2004;2:111–6.

[6] Karaboga D. An idea based on honey bee swarm for numerical optimization.
Technical Report-TR06, Kayseri, Turkey: Erciyes University; 2005.

[7] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global
Optimization 2007;39:171–459.

[8] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing 2008;8:687–97.

[9] Karaboga D, Basturk B. A comparative study of artificial bee colony algorithm.
Applied Mathematics and Computation 2009;214:108–32.

[10] Singh A. An artificial bee colony algorithm for the leaf-constrained minimum
spanning tree problem. Applied Soft Computing 2009;9:625–31.

[11] Kang F, et al. Structural inverse analysis by hybrid simplex artificial bee
colony algorithms. Computers & Structures 2009;87:861–70.

[12] Samrat L, et al. Artificial bee colony algorithm for small signal model
parameter extraction of MESFET. Engineering Applications of Artificial
Intelligence 2010;11:1573–2916.

[13] Storn R, Price K. Differential evolution–A simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization
2010;23:689–94.

W.-F. Gao, S.-Y. Liu / Computers & Operations Research 39 (2012) 687–697 697
[14] Zhu GP, Kwong S. Gbest-guided artificial bee colony algorithm for numerical
function optimization. Applied Mathematics and Computation 2010,
doi:10.1016/j.amc.2010.08.049.

[15] Akay B, Karaboga D. A modified artificial bee colony algorithm for real-
parameter optimization. Information Sciences 2010, doi:10.1016/j.ins.
2010.07.015.
[16] Alatas B. Chaotic bee colony algorithms for global numerical optimization.
Expert Systems with Applications 2010;37:5682–7.

[17] Rahnamayan S, et al. Opposition-based differential evolution. IEEE Transac-
tion on Evolutionary Computation 2008;12:64–79.

[18] Shang YW, Qiu YH. A note on the extended Rosenbrock function. Evolu-
tionary Computation 2006;14:119–26.

dx.doi.org/10.1016/j.amc.2010.08.049
dx.doi.org/10.1016/j.ins.2010.07.015
dx.doi.org/10.1016/j.ins.2010.07.015

	A modified artificial bee colony algorithm
	Introduction
	Artificial bee colony algorithm
	Initialization of the population
	Initialization of the bee phase
	Calculating probability values involved in probabilistic selection
	Onlooker bee phase
	Scout bee phase
	Main steps of the artificial bee colony algorithm

	Modified artificial bee colony algorithm
	Initial population
	A modified search equation
	The proposed approach
	Adjusting the selective probability P

	Experimental studies on function optimization problems
	Benchmark functions and parameter settings
	Experimental results
	Effects of each modification on the performance of MABC

	Conclusion
	Acknowledgments
	References

