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Abstract

Particle swarm optimization algorithm has recently gained much attention in the global optimization research commu-
nity. As a result, a few variants of the algorithm have been suggested. In this paper, we study the efficiency and robustness
of a number of particle swarm optimization algorithms and identify the cause for their slow convergence. We then propose
some modifications in the position update rule of particle swarm optimization algorithm in order to make the convergence
faster. These modifications result in two new versions of the particle swarm optimization algorithm. A numerical study is
carried out using a set of 54 test problems some of which are inspired by practical applications. Results show that the new
algorithms are much more robust and efficient than some existing particle swarm optimization algorithms. A comparison
of the new algorithms with the differential evolution algorithm is also made.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Particle swarm; Global optimization; Population set; Differential evolution
1. Introduction

In this paper, we consider the problem of finding the global minimum of the bound constrained optimiza-
tion problem (without loss of generality we consider only minimization problems)
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f ðxÞ; ð1Þ
where f : X � Rn! R is a continuous real-valued function and the search region X is a multidimensional inter-
val specified by lower and upper bounds xl; xu 2 Rn, respectively. A point xopt is said to be a global minimizer
of f if
fopt ¼ f ðxoptÞ 6 f ðxÞ; 8x 2 X: ð2Þ

Global optimization problems are frequently encountered in many practical applications such as physics,

engineering design, molecular biology and other scientific applications. In global optimization, it is often
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required to locate the global optimum among many local optima. In many cases, global optimization prob-
lems involve nonlinear functions of many variables, often with attributes, such as discontinuity and non-dif-
ferentiability, that are difficult to solve using traditional steepest descent methods. Consequently, stochastic
search methods which do not require any properties of the objective function have been developed. They
include, amongst others, genetic algorithms (GA) [1,2], differential evolution (DE) [3,4], particle swarm opti-
mization (PSO) [5,6] and ant colony optimization (ACO) [7,8]. These methods evaluate the objective function
in a random sample of points from the search space and subsequently manipulate the sample. Thus, they are
applicable to a wide range of problems. These methods are often referred to as population set-based global
optimization methods. This paper deals with solving (1) using PSO.

The PSO method was suggested by Kennedy and Eberhart [5]. It was developed based on the observations
of the social behaviour of animals, such as bird flocking and fish schooling, and the swarm theory. Like other
population set-based methods [1,4], PSO uses a population of candidate solutions, called particles, with their
positions initialized randomly from the search space X. It progresses in an epoch or iteration base. At each
iteration, each particle is assigned with a velocity, also initialized randomly in X, according to its own expe-
riences and those of its companions, i.e., other members of the population set. The velocity of each particle is
updated using the best position it visited so far and the overall best position visited by its companions. Then
the position of each particle is updated using its updated velocity per iteration. Thus, as compared to other
population set-based methods, e.g., genetic algorithm or differential evolution, PSO has memory. Previously
visited best positions in PSO are remembered, while in GA and DE, these are forgotten once the current pop-
ulation changes.

PSO has gained popularity lately and has been applied to wide applications in different fields [9–13]. How-
ever, it has a number of drawbacks, one of which is the presence of problem dependent parameters. A number
of variations to the original PSO have been proposed to make PSO faster and reliable. Some of these variants
[14–17] have been based on the choice of parameter selection while the other have been based on hybridization
[18–21]. However, all of these variations have been justified using small sets of low dimensional problems. In
this paper, we investigate the efficiency and reliability of some variants of PSO that were proved to be superior
in an earlier study [17]. In our study, we first identify the slow convergence rate of PSO, and demonstrate the
reasons for the slow convergence, specially at the vicinity of the global minimizer. We then propose some rem-
edies in order to improve its convergence rate. Specifically, we suggest some modifications to the velocity
update of PSO based on the knowledge of previous swarm success. In addition, we hybridize PSO by embed-
ding the point generation scheme of DE in PSO.

We test the performance of the modified PSO algorithms with their original version as well as with a poten-
tial competitor, namely the DE algorithm, using 54 test problems with dimension ranging from 2 to 30. In our
view such a comparison is necessary as, to the best of our knowledge, this has not been thoroughly done
before.

The remainder of this paper is organized as follows. Section 2 describes the original PSO model and some of
its variants. Section 3 presents motivations for our modifications. Then our proposed modifications to PSO
are described in Section 4. Numerical results and discussions are presented in Section 5. Finally, Section 6 pro-
vides some concluding remarks based on the results in Section 5.

2. Brief introduction of particle swarm optimization

Particle swarm optimization maintains a group of particles. At each iteration k, the ith particle is repre-
sented by a vector xk

i in multidimensional space to characterize its position. The vector vk
i is used to charac-

terize its velocity. Thus, PSO maintains a set of positions:
S ¼ xk
1; x

k
2; . . . ; vk

N

� �

and a set of corresponding velocities
V ¼ vk
1; v

k
2; . . . ; vk

N

� �
:

Initially, the iteration counter k = 0, and the positions x0
i and their corresponding velocities

v0
i ði ¼ 1; 2; . . . ;NÞ, are generated randomly from the search space X. Each particle changes its position xk

i ,
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per iteration. The new position xkþ1
i of the ith particle ði ¼ 1; 2; . . . ;NÞ is biased towards its best position pk

i

with best function value, referred to as personal best or pbest, found by the particle so far, and the very best
position pk

g, referred to as the global best or gbest, found by its companions. The gbest is the best position in
the set
Pse

Ste

Ste
Ste

Ste
St
P ¼ pk
1; p

k
2; . . . ; pk

N

� �
;

where p0
i ¼ x0

i ; 8i.
We regard a particle in S as good or bad depending on its personal best being a good or bad point in P.

Consequently, we call the ith particle (jth particle) in S the worst (the best) if pk
i (pk

j ) is the least (best) fitted,
with respect to function value, in P. We denote the pbest of the worst particle and the best particle in S as pk

h

and pk
g, respectively. Hence pk

g ¼ arg mini2f1;2;...;Ngf ðpk
i Þ and pk

h ¼ arg maxi2f1;2;...;Ngf ðpk
i Þ.

At each iteration k, the position xk
i of the ith particle is updated by a velocity vkþ1

i which depends on three
components: its current velocity vk

i and the weighted difference vectors ðpk
i � xk

i Þ and (pk
g � xk

i ). Specifically, the
set S is updated for the next iteration using
xkþ1
i ¼ xk

i þ vkþ1
i ; ð3Þ
where
vkþ1
i ¼ vk

i þ r1c1ðpk
i � xk

i Þ þ r2c2ðpk
g � xk

i Þ: ð4Þ
The parameters r1 and r2 are uniformly distributed random numbers in [0, 1] and c1 and c2, known as the cog-
nitive and social parameters respectively, are popularly chosen to be c1 = c2 = 2 [5]. Thus the values r1c1 and
r2c2 introduce some stochastic weighting in the difference vectors ðpk

i � xk
i Þ and ðpk

g � xk
i Þ, respectively. The set

P is updated, as the new positions xkþ1
i are created, using the following rule:
pkþ1
i ¼

xkþ1
i if f ðxkþ1

i Þ < f ðpk
i Þ

pk
i otherwise:

(
ð5Þ
This process of updating the velocities vk
i , positions xk

i , pbest pk
i and the gbest pk

g is repeated until a user-defined
stopping condition is met. This standard version of PSO is referred to as PSO-S. Below we give a pseudo-code
of PSO-S by Kennedy and Eberhart [5].
udo-code of the PSO-S algorithm

p 1 Initialization.
Step 1a Initialize iteration counter k = 0
Step 1b Initialize N random positions of the particles ðxk

i ; i ¼ 1; 2; . . . ;NÞ and store them in S.
Step 1c Initialize N random velocities (vk

i , i ¼ 1; 2; � � � ;N ) and store them in V.
Step 1d Initialize N pbest ðpk

i ; i ¼ 1; 2; . . . ;NÞ and store them in P.
Step 1e Set pk

g equal the best pbest in P.
p 2 While not stopping criterion do

p 2a For each ith particle:
– Update V: Calculate vkþ1

i using (4)
– Update S: Calculate position xkþ1

i using (3)
– Update P: Update P using (5).

p 2b Update gbest pk
g: pkþ1

g ¼ arg mini2f1;2;...;Ngf ðpkþ1
i Þ.

ep 2c k = k + 1.
We now briefly present a number of modifications to PSO-S that have been introduced in the literature. The
first modification was done by Shi and Eberhart [15]. They proposed a constant inertia weight x which con-
trols how much a particle tends to follow its current direction as compared to the memorized pbest pk

i and the
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gbest pk
g. This version is referred to as PSO with constant inertia or PSO-CI. Hence, in PSO-CI, the velocity

update is given as
vkþ1
i ¼ xvk

i þ r1c1 pk
i � xk

i

� �
þ r2c2 pk

g � xk
i

� �
; ð6Þ
where the values of r1 and r2 are realized component-wise.
Shi and Eberhart [16] also proposed a linearly varying inertia weight during the search. The inertia weight is

linearly reduced during the search. This entails a more globally search during the initial stages and a more
locally search during the final stages. This version is referred to as PSO with linear inertia or PSO-LI. They
also proposed a limitation of each particle’s velocity to a specified maximum velocity vmax. The maximum
velocity was calculated as a fraction c (0 < c 6 1) of the distance between the bounds of the search space, i.e.,
vmax ¼ cðxu � xlÞ: ð7Þ

The versions PSO-CI and PSO-LI equipped with (7) are referred to as PSO with constant inertia and maxi-
mum velocity limitation or PSO-CIV and PSO with linear inertia and velocity limitation or PSO-LIV,
respectively.

Fourie and Groenwold [13] suggested a dynamic inertia weight and maximum velocity reduction. In this
modification, an initial inertia weight x0 and maximum velocity vmax, calculated as in (7), are prescribed.
The inertia weight and maximum velocity are then reduced by fractions a and b respectively, if no improve-
ment in pk

g occur after a specified number of iterations h, i.e.,
if f ðpk
gÞ ¼ f ðpk�h

g Þ then xkþ1 ¼ axk and vmax
k ¼ bvmax

k ; ð8Þ
where a and b are such that 0 < a,b < 1. This version is referred to as PSO with dynamic inertia and maximum
velocity limitation or PSO-DIV.

Clerc and Kennedy [14] introduced another interesting modification to PSO-S in the form of a constriction
coefficient K which controls all the three components in velocity update rule (4). This has an effect of reducing
the velocity as the search progresses. In this modification, the velocity update is given as
vkþ1
i ¼ K vk

i þ r1c1 pk
i � xk

i

� �
þ r2c2ðpk

g � xk
i Þ

� �
; ð9Þ
where
K ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

q				
				
; / ¼ c1 þ c2 > 4: ð10Þ
This version is referred to as PSO with constriction or PSO-C. All the above modifications are very simplis-
tic in a sense that they only (gradually) reduce the parameter value(s) without affecting the structure of PSO.

Other researchers have hybridized PSO with other algorithms. For example, Shi et al. [21] hybridized PSO
with a variable population-size GA. In this hybrid both GA and PSO are executed separately and then the
members from their respective population set are mixed according to their fitness, periodically. The algorithm,
however, is tested on six simple and easy test problems.

Liu et al. [18] combined PSO with a chaotic local search (CLS). CLS is a variant of the discrete version of
the logistic equation [22] where the chaotic variables are calculated from the members of S, pk

g and pk
h. This

hybrid is also tested on a set of seven test problems.
Another hybrid is due to Hendtlass [20], where PSO is combined with DE to form a combined swarm dif-

ferential evolution algorithm (SDEA). In this condensed and short paper, the author updates the particle posi-
tions using both PSO scheme and DE scheme, alternatively in a controlled manner. SDEA also modifies the
personal best, pk

i , by some other members of the population. All the swarm members, therefore, influence all
other individuals but the magnitude of the influence decreases with both fitness and distance. The algorithm is
tested on four test problems only.

Da and Xiurun [19] also modified PSO by introducing a temperature-like control parameter as in the sim-
ulated annealing (SA) algorithm. This version of PSO probabilistically selects the overall best, pk

g, in the updat-
ing of vkþ1

i for each i. Unlike SA, the temperature here increases from a low to a high value. This ascertains
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that PSO randomizes pk
g in P for the low temperature. At the high temperature, pk

g is selected deterministically
as in the original PSO. Results of this hybrid are reported only for an application from rock engineering.

A recent numerical study, conducted by Schutte and Groenwold [17] using seven variants of PSO, found
that three variants were superior to the others. These variants are PSO-CIV, PSO-DIV and PSO-C. The
numerical study was carried out using the extended Dixon–Szegö [23] test set. Although only 12 problems were
used, this study with PSO has been more thorough than other studies with PSO.

Typically, when an algorithm is developed, it is tested against a set of problems. The set of test problems is
often selected haphazardly and differs from that used for the other algorithm. The differences in test problem
sets may induce bias towards particular algorithms when comparing their performances. It is therefore impor-
tant to use a larger and representative set of test problems when comparing different algorithms.

In this paper we propose modifications to PSO-CIV. We then thoroughly assess the strengths of PSO-CIV,
PSO-DIV and PSO-C, and the modified PSO-CIV using a much larger test set. We show that the new PSO
methods suggested are better than the three variants mentioned above. We present below the reasons for
our modifications.

3. Motivation for the proposed modifications

Like the previous variants of PSO, our modifications are inspired by the drawbacks of PSO with respect to
reliability and efficiency. When a variant of an algorithm is suggested, often drawbacks are identified with the
results obtained. Modifications are then suggested in an attempt to remedy the drawbacks, i.e., to improve the
results. The difference made in this paper is that we not only identify the drawbacks with respect to the results
obtained, we also investigate the cause of such drawbacks.

Most of the variants of PSO are based on the modification of the velocity update (6). In particular, all the
non-hybrid PSO variants reported in this paper have been derived from the original PSO, PSO-S, by introduc-
ing the maximum velocity restriction and/or changing the parameter values. These changes were made simply
because they produced better results without reporting any (analytical) reasons for such results, except often
the intuitive ones. The modifications suggested in this paper are also based on parameter values, but other
changes are also incorporated in PSO-CIV that add complementary strengths to the parameter choices.

We have shown posteriori the effects of changing the problem dependent parameters c1, c2 and x in the
numerical section, where we have also shown how judicious choices of these parameters can improve PSO-
CIV significantly. We have also reported in the numerical section that c1 = c2 = 2 are good choices as any
reduction of these values is detrimental to locating the global minimum. With these parameter values, we
investigate, here, the drawbacks of PSO-CIV and suggests modifications in the random weights of the cogni-
tive and social velocity terms of (6). We also suggest a modification in the choice of x. In particular, we link
the choice of x with the success of particle i at the kth iteration. We present our arguments on why such mod-
ifications together with the other changes in the PSO-CIV algorithm need to be made. Modifications will be
justified further in the numerical section. The objective in this section, therefore, is to identify the drawbacks
and their possible reasons, and then to suggest possible remedies.

Drawbacks are often associated with the low success rate in obtaining the global minimum (reliability) and
the high number of function calls (efficiency). Recent studies [1], however, have shown that the population-
based direct search methods achieve high success rates only at the cost of high function calls. Hence any rem-
edy of such drawbacks must hold a balance in the bi-objective criteria. A reasonable balance that is often
sought for is to diversify the search at the early stages of an algorithm for greater success, and to intensify
the search at the later stages for faster convergence-requiring low function calls.

We begin our study with the search intensification capability of PSO-CIV. We first present numerical moti-
vations and then provide some mathematical reasoning. For this, we run PSO-CIV on a simple function such
as
f ðx; yÞ ¼ x2 þ y2 ð11Þ

and count the total number of particle positions, xk

i , generated and how often these positions are able to im-
prove their corresponding pbest, pk

i , during the course of a run, i.e., for all i and k. We study this within
the vicinity of the minimizer. In particular, we use X1 = [� 0.06,0.06]2 and X2 ¼ ½�0:12; 0:12�2 and stop the
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PSO-CIV algorithm as soon as pk
g 6 10�5. Average results over 100 runs show that the pbest replacement rates

are about 22% and 21% on X1 and X2 respectively, irrespective of the size of the population, N = 10, 20. Re-
sults from 200 individual run on X1 and X2 also show that the maximum replacement rate is only 26%. These
results clearly prove that the search intensification capability of PSO-CIV is very low. We, therefore, look into
the reasons for such low replacement rates of PSO-CIV on the same function. An advantage of using function
(11) is that one can easily visualize the function value without evaluating the function at a point-it is the square
of the distance from the origin to the point. If we look for reasons without affecting the operations used by
PSO-CIV then we are forced to look at the effects of the parameters on drawbacks.

We run again PSO-CIV in X1 and observe only the particle positions, xk
i , that take 10 or more iterations to

replace their personal best, pk
i . An average result over 5 runs, based on iterations starting at 10, shows that

about 18% particles take more than 10 iterations to replace their pbest, pk
i , i.e., f ðpk

i Þ ¼ f ðpkþhi
i Þ, hi > 10. This

is certainly a computational burden at the later stages of PSO-CIV. We carefully looked at the individual com-
ponents, V 1 ¼ xvk

i , V 2 ¼ 2r1ðpk
i � xk

i Þ and V 3 ¼ 2r2ðpk
g � xk

i Þ of the velocity update
vkþ1
i ¼ xvk

i þ 2r1 pk
i � xk

i

� �
þ 2r2 pk

g � xk
i

� �
¼ 0:6vk

i þ C1 pk
i � xk

i

� �
þ C2 pk

g � xk
i

� �
; ð12Þ
for these particle positions. When V2 = 0, i.e., immediate after the replacement of the pbest pk
i , the calculation

of vkþ1
i incorporates the velocity xvk

i which is derived from a completely different set of vectors,
xk�1

i 6¼ xk
i ¼ pk

i 6¼ pk�1
i . We observed that the position and the length of xvk

i coupled with the positions of pk
i

and pk
g cause the slow replacement of pbest. We demonstrate this with the following example for the func-

tion (11). We assume that xk
i ¼ pk

i and that f ðxkþ1
i Þ > f ðpkþ1

i Þ ¼ f ðpk
i Þ, i.e., hi = 1. This is quite possible since

the position xkþ1
i has been calculated using vkþ1

i which uses xvk
i . We now calculate the next position as follows:
xkþ2
i ¼ xkþ1

i þ vkþ2
i ¼ xkþ1

i þ r1 2pkþ1
i � 2xkþ1

i

� �
þ r2 2pkþ1

g � 2xkþ1
i

� �
þ xvkþ1

i : ð13Þ
We now choose xkþ1
i ¼ ðx1; y1Þ and pkþ1

i ¼ ðx2; y2Þ in any two adjacent quadrants such that f ðxkþ1
i Þ > f ðpkþ1

i Þ
and pkþ1

g ¼ � x2

1þ� ;�y2

� �
, where � is a small positive number. For example, if we choose xkþ1

i 2 ½0; 2�2 and

pkþ1
i 2 ½�1; 0�2 then it follows from (13) that
xkþ2
i ¼ ðx1; y1Þ þ xvkþ1

i þ �2x1ðr1 þ r2Þ þ 2x2 r1 �
r2

1þ �


 �
;�2y1ðr1 þ r2Þ þ 2y2ðr1 � r2Þ

� 
: ð14Þ
It can be shown that xkþ2
i given by (14) cannot improve its personal best pkþ1

i for all r1 P 0.5 and
r2 P 0.5(1 + 2�), even when x = 0. Indeed, our numerical simulation using one billion positions of xkþ2

i , gen-
erated using a billion random pair ðr1; r2Þ, r1 P 0.5,r2 P 0.5(1 + 2�), confirmed this. The situation, depending
upon the size of xvkþ1

i , further deteriorates when x 5 0 if the coordinates of xvkþ1
i do not lie in the same quad-

rant as xkþ1
i . In particular, if xvkþ1

i lies in the third quadrant, i.e. if the coordinates of xvkþ1
i are negative and

kxvkþ1
i k > 2kxkþ1

i k then the probability that xkþ2
i improves its personal best is very small. For example, our

numerical testing with another one billion simulated positions of xkþ2
i were unable to produce a better pbest,

pkþ1
i , for all r1; r2 P 0:15. Each of this particle position was obtained by uniformly generating

xvkþ1
i 2 ½�4;�2�2, xkþ1

i 2 ½0; 2�2, kxvkþ1
i k > 2kxkþ1

i k, pkþ1
i 2 ½�1; 0�2 and using pkþ1

g ¼ � x2

1þ� ;�y2

� �
. Notice that

the shortcomings remain even if pkþ1
g is approximated in the vicinity of its location. Although the situation will

improve with iterations, this will require unnecessary function calls at the later stages of any PSO that uses (6).

3.1. Proposed remedies of slow convergence

The derivation (14) of the particle positions, xkþ2
i , using a simple function clearly demonstrates the short-

coming of the velocity update (6) of PSO. This shortcoming could easily be worse with respect to search inten-
sification for a badly scaled function in the neighbourhood of the global minimizer. We suggest a number of
remedies for the above shortcoming of PSO-CIV. We will study these remedies numerically in the numerical
section and show which one(s) of these remedies make(s) the convergence faster without compromising the
reliability or the search diversification of PSO-CIV. The remedies are as follows.
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(R1) Randomize the personal best positions of m worst particles in (6) or (12) by choosing them uniformly
from the personal best positions of m best particles. This is done to introduce some flexibility in particle
movements at each iteration. Our experiments have shown that this adds explorations at early stages and
exploitations at later stages.

(R2) Make the inertia weight x dependent of the particle positions and iterations, i.e., xk
i . Update the velocity

vkþ1
i by setting the inertia weight to some smaller value, e.g., xk

i ¼ 0:3, in xk
i vk

i if hi > 10 else xk
i ¼ 0:6 for

the ith particle, xk
i , in kth iteration. In particular, update vkþ1

i using
vkþ1
i ¼ xk

i vk
i þ 2r1ðpk

i � xk
i Þ þ 2r2ðpk

g � xk
i Þ; ð15Þ

where xk
i may change with particle positions and iterations. This diminishes the effect of vk

i fast by choos-
ing smaller xk

i for higher hi.
(R3) Use the information of kth iteration in the updating of vkþ1

i for the (k + 1)th iteration as follows. If the
percentage of improvement of the pbest in the kth iteration is more than 50%, i.e., if more than 1

2
N par-

ticles improve their personal best, then calculate C1 ¼ maxf2r1; 2r2g and C2 ¼ minf2r1; 2r2g, otherwise
calculate C1 ¼ minf2r1; 2r2g and C2 ¼ maxf2r1; 2r2g, where C1 and C2 are the random weights in the
cognitive and social term in the velocity update, e.g., (12), respectively. This will allow the updating rule
to incorporate some learning components which will then influence the particle xk

i to move longer in the
direction of gbest than that of pbest if the improvement is less than 50% and vice versa.

To see the effect of the above changes we test PSO-CIV on problem (11) in X1. Results suggest that the
personal best replacement rate, on average, increases from 22% to 27%, 25% and 29% for the remedies R1
with m = 10%N, R2 and R3, respectively. Any combination of the above changes increases the rate even fur-
ther. For example an implementation of all three remedies increases the rate to 37% from 22%. We will justify
some of the above remedies further in the next section while the numerical evidences will be shown in the
numerical section.

4. Modifications to PSO-CIV

In this section, we propose two new versions of PSO. The first version modifies the velocity update rule of
PSO-CIV. The second version modifies the position update rule of PSO-CIV.

To motivate our first version, we study the velocity update rule (6). At the kth iteration, the ith velocity
update vkþ1

i is used in the updating of xk
i ði ¼ 1; 2; . . . ;NÞ. Then the ith particle moves from xk

i to xkþ1
i in the

direction of vkþ1
i . In an optimization context, it is expected that PSO should be exploratory (search diversifi-

cation) at earlier stages of the iterations and exploitationary (search intensification) at final stages. Search
diversification is needed for the identification of the region of attraction of the global minimizer. On the other
hand, search intensification is needed for rapid convergence once the particles are clustered around the global
minimizer. The velocity updating rule (6) of PSO-CIV has limitations with regards to both search diversifica-
tion at the early stages and intensification at the later stages of PSO-CIV.

We have discussed the limitation of (6) in search intensification at the later stages of PSO-CIV in the pre-
vious section. We now discuss the search diversification at the early stages of PSO-CIV. For this, we take a
likely case where pk

i for the ith particle and pk
g do not change for a number of iterations. The velocity update

rule (6) for these iterations will use fixed pk
i and pk

g, making the corresponding position update xkþ1
i less explor-

atory. In particular, these iterations may create positions xkþ1
i that are close to pk

i , making the difference vector
ðpk

i � xk
i ) short, thus limiting the exploration.

We address the above limitation of rule (6) by introducing the remedy R1 in PSO-CIV. The incorporation
of R1 will be further justified in the numerical section. We argue that R1 enhances the search diversification at
early stages and it enhances the intensification at later stages. The remedy R1 randomizes pbest or pk

l in the
cognitive component of (6). In particular, we replace (pk

i � xk
i ) for the ith particle with (pk

l � xk
i ) in (6), where

pk
l is a randomly chosen pbest from a number of fitter pbests in P. We incorporate the random vector (pk

l � xk
i )

in (6) for a number of worse particles in S. At the earlier stages, the positions of pk
l are scattered. In addition,

the random pk
l makes vkþ1

i random and thereby making xkþ1
i exploratory. Moreover, for worse particles, at the

later stages, when the particles in S are in the region of attraction of the global minimizer, both vectors
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ðpk
l � xk

i Þ and ðpk
g � xk

i Þ will be directed towards locations with lower function values. This makes the algorithm
conducive to convergence. This version of PSO is referred to as PSO with randomized pbest in the cognitive
component or PSO-RPB.

Our second modification is inspired by two studies involving DE and PSO. The study carried out by Pat-
erlini and Krink [9] has shown that DE is much better than PSO in terms of giving accurate solutions to
numerical optimization problems. On the other hand, the study by Angeline [24] has shown that PSO is much
faster in identifying the promising region of the global minimizer but encounters problems in reaching the glo-
bal minimizer. This is exactly what we have demonstrated in the previous section for a simple function. There-
fore, we integrate the complementary strengths of the two algorithms to give an efficient and reliable PSO
hybrid algorithm. In particular, we embed the DE point generation scheme (mutation and crossover rules)
in PSO-CIV so that the new positions in S are either generated by the PSO-CIV position update scheme or
by the DE point generation scheme, per iteration. This version is referred to as PSO with hybrid scheme
for position update or PSO-HS. In the next subsections, we present details of our proposed modifications.

4.1. PSO with randomized pbest in the cognitive component

This modified version, PSO-RPB, of PSO-CIV is based on velocity updates of the m (m� N) worst par-
ticles (with worst pbests in P) in the population set S. At the beginning of the kth iteration, we identify m worst
particles and m best particles (with best pbests in P) in S. We then update the velocities of the m worst particles
using
vkþ1
i ¼ xvk

i þ 2r1 pk
l � xk

i

� �
þ 2r2 pk

g � xk
i

� �
; ð16Þ
where pk
l is randomly chosen from the pool of m best pbest in P. The vector pk

l is different from the gbest pk
g.

This feature tends to be exploratory at earlier stages and also expedite the convergence of PSO by directing
particles with worst pbest towards more promising search areas, especially when the particles are clustered
around the global minimizer. The velocity updates for the remaining particles use V 2 ¼ 2r1ðpk

i � xk
i Þ in (16).

Notice that PSO-RPB becomes PSO-CIV when pk
i replaces pk

l in V2. Therefore, PSO-CIV equipped with R1
is PSO-RPB. The algorithm of PSO-RPB is, therefore, easy to implement.

4.2. PSO with hybrid scheme for position update

This version hybridizes the position update rules (3) and (6) of PSO-CIV with the point generation scheme
of DE. Roughly speaking, PSO-HS uses the rules (3) and
vkþ1
i ¼ xvk

i þ C1 pk
i � xk

i

� �
þ C2 pk

g � xk
i

� �
; ð17Þ
at the initial stages of the search and then switches to the DE point generation scheme. The values of C1 and
C2 in (17) are calculated for each component of vkþ1

i . In particular, we use C1 > C2 for each component of each
particle at the (k + 1)th iteration if more than 50% successes in replacement of pbest have been achieved at the
kth iteration, otherwise we use C2 > C1. Clearly, PSO-CIV implements the remedy R3 of previous section. The
incorporation of R3 will be further justified in the numerical section. We note here that switching to the DE
scheme does not mean switching to the DE algorithm. The new algorithm still works as PSO-CIV, but the only
difference is that the positions xk

i of the particles are updated using the operators of DE. In particular, updat-
ing of the position xk

i of the ith particle is carried out by first creating a vector x̂k
i corresponding to the position

xk
i using the rule
x̂k
i ¼ pk

r1 þ F i xk
r2 � xk

r3

� �
; ð18Þ
where xk
r2 and xk

r3 are two randomly chosen distinct positions of two particles from S and also different from
the position xk

i of the ith particle. The pbest pk
r1 is randomly chosen from P. The parameter Fi is a random

scaling factor, different for each i. The rule (18) is known as the mutation rule. The rule (18) differs from
the mutation of DE in that the point pk

r1 is chosen from P whereas in DE all three points in (18) are chosen
randomly from S. Notice that the vector x̂i is created by shifting a random pbest in P in the direction of
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ðxk
r2 � xk

r3Þ. This mutation rule induces some local effects around pk
r1 at later stages when the particles in S are

clustered around the global minimizer. If the vector x̂k
i is not in the domain then (18) is repeated. The new

position xkþ1
i is then created using the rule
Pse

Ste

Ste
xkþ1
ij ¼

x̂k
ij if Rj

6 CR or j ¼ I i

xk
ij if Rj > CR and j 6¼ I i;

(
ð19Þ
where x̂k
ij, xk

ij and xkþ1
ij are the jth components of x̂k

i , xk
i and xkþ1

i , respectively. The integer Ii is randomly chosen
from the set
I ¼ f1; 2; . . . ; ng;

and Rj 2 (0, 1) is drawn randomly for each j. The rule (19) is known as the crossover rule. The parameter
CR 2 ½0; 1�, known as the crossover parameter, together with Ii ensure that the position xkþ1

i has components
coming from the components of xk

i and the components of x̂k
i .

The criterion which determines when to use the DE operators (18) and (19) is based on the component-wise
standard deviation of the positions xk

i in S. At the beginning of the kth iteration (k ¼ 1; 2; . . .) we calculate the
component-wise standard deviation of positions in S. That is, we calculate the standard deviation rk

j of the jth
components of positions in S. Intuitively, as the iterations proceed, krkk ! 0, where rk ¼ ðrk

1; r
k
2; . . . ; rk

nÞ, n is
the dimension of the problem being solved. We use the condition krkkP �1kr0k to switch between the position
update rules (3) and (17) of PSO-CIV and position update rules (18) and (19) of DE, where �1 2 (0,1) is a
switching parameter and is user provided. Notice that kr0k depends on the size of the search space X. Notice
also that PSO-HS becomes PSO-CIV when C1 and C2 are replaced with 2r1 and 2r2 respectively in (17), and
when �1 = 0. Below we present the pseudo-code of the PSO-HS algorithm.
udo-code of the PSO-HS algorithm

p 1 Initialization.
Step 1a Initialize iteration counter k = 0
Step 1b Initialize N random particles (xk

i , i ¼ 1; 2; . . . ;N ) and store them in S.
Step 1c Initialize N random velocities (vk

i , i ¼ 1; 2; . . . ;N ) and store them in V.
Step 1d Initialize N pbest (pk

i , i ¼ 1; 2; . . . ;N ) and store them in P.
Step 1e Set pk

g equal the best pbest in P.
p 2 While not stopping criterion do

Step 2a Evaluate rk ¼ ðrk
1; r

k
2; . . . ; rk

nÞ. If krkkP �1jr0k then go to Step 2b else go to Step 2c.
Step 2b For each ith particle:

– Update V: Calculate vkþ1
i using (17)

– Update S: Calculate position xkþ1
i using (3)

– Update P: Update P using (5).
– Go to Step 2d

Step 2c For each ith particle:
– Update S: Calculate position xkþ1

i using (18) and (19).
– Update P: Update P using (5).

Step 2d Update gbest pk
g: pkþ1

g ¼ arg mini2f1;2;...;Ngf ðpkþ1
i Þ.

Step 2e k = k + 1.
5. Numerical results and discussion

In this section, numerical results of all the new PSO algorithms along with the results of PSO-CIV, PSO-C
and PSO-DIV are presented. The new PSO algorithms are also compared with their potential competitors.
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We use 54 test problems from Ali et al. [25] and Yao et al. [26]. The number of problems is 50, with several
variations in dimension for some problems, bringing the final number up to 54. All the problems are of con-
tinuous variables and a detailed description of the problems can be found in Ali et al. [25]. We compare the
new algorithms with the PSO variants PSO-CIV, PSO-C and PSO-DIV to assess their robustness in finding the
global minimum and their efficiency in terms of the number of function calls. The algorithms were run 100
times on each of the test problems to determine the success rate (sr) (or percentage success) of each algorithm.
We calculated the average number of function calls (fe) for those runs for which the global minima were
found. We used sr and fe as the criteria for comparison. In all cases, a success was counted when the condition
Table
Param

N

x
c1

c2

T

�

a
b
h

hi

m

�1
Fi

CR
fmin � fopt 6 0:001; ð20Þ

was met, where fmin is the best solution found when an algorithm terminates and fopt is the known global min-
imum of the problem considered. The tolerance used in condition (20) was found suitable as any value larger
than 0.001 would mean counting local minimizers as the global minimizer for a number problems.

5.1. Parameter selection

All the algorithms have some parameters that have to be provided by the user. These parameters are pre-
sented in Table 1. The first six parameters are common to all algorithms tested in this sections. These are the
size N of the population; x, c1 and c2 are the parameters of the velocity updates (6), (16) and (17); T and � are
tolerances used in the stopping rule. In the literature, different values of N have been used for population size.
In this paper, we set N = 10n, where n is the dimension of the problem under consideration. The inertia weight
x is set to 0.6 [17] for all variants of PSO. The cognitive and social parameters c1 and c2 were both set to 2 as
suggested in the literature for all variants except PSO-C. For PSO-C, we set c1 = 2.8 and c2 = 1.3 as suggested
in [17].

One of the important questions in PSO is when to stop a run. Many researchers have used either the max-
imum number of iterations (T) or maximum number of function calls as stopping conditions in their numerical
experiments [17,18]. Liu et al. [18] also used jfmin � foptj 6 �, where fmin is the best solution found so far. The
stopping condition jfmin � foptj 6 � only applies if the optimal value of the problem under consideration is
known. However, in many practical applications, the optimal value is not known. On the other hand, the max-
imum number of iterations (or function calls) cannot be judged for an arbitrary function. This may lead to
unnecessary function calls when the minimum is reached long before the maximum number of iterations
(or function calls)–thus increasing on computational costs. In this paper, we use a combination of the maxi-
mum number of iterations (T) and the condition jfmax � fminj 6 �, where fmax ¼ f ðpk

hÞ is the function value of
the current worst pbest pk

h in P and fmin ¼ f ðpk
gÞ is the function value of the current best pbest pk

g in P. Since
each pbest in P is always updated with an improving point (see (5)) at each iteration, the set P will gradually
contract. Hence, we stop a run when the points in P are identical to an accuracy of four decimal places, i.e.,
1
eters used in the PSO algorithms

Swarm size
Inertia weight
Cognitive parameter
Social parameter
Maximum iterations for stopping an algorithm
Tolerance used in the stopping rule of an algorithm
Dynamic inertia reduction
Dynamic velocity reduction
Number of iterations between any two consecutive replacement of pk

g
Number of iterations between any two consecutive replacement of the ith pbest, pk

i
Number of worst particles considered in PSO-RPB
Switching parameter in PSO-HS
Scaling factor in PSO-HS
Crossover parameter in PSO-HS
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jfmax � fminj 6 � ¼ 10�4; ð21Þ

or the maximum number of iterations, T = 5000, is reached.

The other parameters are a, b and h in PSO-DIV. We set a = b = 0.99 and h = 10 as suggested in [17].
A parameter of PSO-RPB is m and its value was determined after numerical testings. The parameter m was

set to the closest integer value to 0.1N. We have conducted a numerical study using a small range of values of
m, e.g., using m 2 ½0:05N ; 0:2N �. The study suggested that m = 0.1N is a good value to choose.

The parameters of PSO-HS are �1, Fi and CR. The parameters Fi and CR are due to the DE algorithm. The
parameter �1 is used to switch between the particle generation rules of PSO-CIV and DE. A numerical study
was carried out for the parameter �1 in PSO-HS. The study suggested that a smaller value of �1 was better,
especially for high dimensional problems. The most suitable values of �1 were empirically found to lie roughly
in [0.001, 0.005] with the overall best value being 0.003. The other parameters for PSO-HS are the scaling fac-
tor Fi in (18) and the crossover parameter in CR in (19). In our numerical experiments, variable values of the
parameters were used. The scaling factor Fi was chosen randomly from [0.4,1] for each i and CR was chosen
randomly from [0.5,0.7] for each kth iteration. Experiments have shown that these choices are better than the
fixed values. Our numerical experiments with the original DE have also shown that these parameter values
produces better results [27]. In the original DE algorithm, Fi and CR are fixed. A better version of DE is there-
fore used when comparing the original DE with other algorithms in this section.

The maximum velocity limitation for PSO-CIV, PSO-RPB and PSO-HS was set as vmax = 0.5(xu � xl).
However, the initial maximum velocity limitation for PSO-DIV was set as vmax = (xu � xl) as suggested in [17].

When updating positions in PSO it may happen that the new positions leave the search region X. Whenever
this happens, we employ the strategy suggested in Paterlini and Krink [9]. That is, if the component xkþ1

ij ,
j ¼ 1; 2; . . . ; n, of the new position xkþ1

i leaves the domain of the search space, it is reflected back into the
domain by
xkþ1
ij ¼ xkþ1

ij � 2 xkþ1
ij � xu

j

� �
; ð22Þ
if xkþ1
ij > xu

j and
xkþ1
ij ¼ xkþ1

ij þ 2 xl
j � xkþ1

ij

� �
; ð23Þ
if xkþ1
ij < xl

j, where xu
j and xl

j are the upper and lower bounds of each jth component, respectively. In both cases,
the jth velocity component is reversed, i.e.,
vkþ1
ij ¼ �vkþ1

ij : ð24Þ
5.2. Numerical studies of parameter values

We study the effect of changing parameters values of PSO-CIV in this section. This study is necessary to
justify the proposed changes to the parameter values which resulted in two new variants of PSO-CIV. Results
of the new variants, PSO-HS and PSO-RPB, will follow this study. In this study, we use 50 test problems with
dimension up to 20. Each problem was run 100 times and therefore there were 5000 runs in total. Summarised
results are presented in Table 2 where the results in the columns under fe and sr are the total results; np is the
number of problems solved out of 50 problems; sr/39 is the total number of successes out of 3900 runs on 39
problems and sr/np is the total sr in np problems. For a fair comparison we use the total fe and sr on 39 prob-
lems where all algorithms were successful.

In order to facilitate the understanding and to make the difference between various parameter setting more
explicit we append to PSO-CIV the parameter or its value, e.g., PSO-CIV(x,c1,c2). Using this notation we thus
write PSO-CIV as PSO-CIV(0.6,2,2), and hence the parameter values used in versions 1–6 of PSO-CIV in
Table 2 are very clear. The version 7 implements PSO-CIV with C1 and C2 as suggested in remedy R3 in Sec-
tion 3.1. The use of R3 has been indicated with the superscript. Similarly, the version 8 implements PSO-CIV
with a variable inertia weight, xk

i , as suggested in remedy R2 in Section 3.1. The version 9 implements PSO-
CIV with remedies R2 and R3 of Section 3.1 and these have also been indicated in superscripts.



Table 2
Comparison of PSO-CIV on 50 problems

Version PSO-CIV fe sr/39 sr/np np

1 PSO-CIV(0,2,2) 1521839 3341 3431 44
2 PSO-CIV(0.3,2,2) 1578211 3337 3494 44
3 PSO-CIV(0.6,2,2) = PSO-CIV 1798196 3572 3699 44
4 PSO-CIV(0.6,1,2) 283281 3424 3616 41
5 PSO-CIV(0.6,2,1) 1134914 3510 3623 43
6 PSO-CIV(0.6,1,1) 281552 3220 3220 39

7 PSO-CIV(0.6,C1,C2)R3 485669 3528 3708 44
8 PSO-CIV ðxk

i ; 2; 2Þ
R2 1292168 3580 3710 44

9 PSO-CIV ðxk
i ;C1;C2ÞR2;R3 406168 3463 3662 45
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The versions 1–3 measure the effects of lowering x. Results show that total sr/np are much lower for lower
values of x although each of the three versions solves the same number of problems. The implementation of
PSO-CIV with x > 0.6, although the results are not shown, are detrimental to fe while achieving about the
same sr. On the other hand, a comparison of the versions 3–6, which measure the effects of lowering c1

and c2, shows that both sr/np and np decreases with the decrease of either c1 or c2 or both. A comparison
between the versions 4 and 5 shows that the effect of lowering c2 is much higher than the effect of lowering
c1, with respect to fe. If the parameter values are chosen based on numerical studies then perhaps the values
x = 0.6, c1 = c2 = 2 are balanced choices as suggested in previous literature [17].

Having discussed the sensitivities of the three parameters of PSO-CIV, we now study the effects of param-
eter-based remedies, R2 and R3, suggested in Section 3.1. The remedy R1 is not parameter-based and thus will
be studied later in this section. We begin with remedy R3. The version 7, which replaces c1r1 and c2r2 in PSO-
CIV with C1 and C2, is about 72% superior to PSO-CIV with respect to fe while it has minor differences in sr/
np and np. Similarly, the version 8, which implements R2 in PSO-CIV, is about 28% superior to PSO-CIV
with respect to fe. On the other hand, the version 9, which implements both R2 and R3, is about 77% superior
to PSO-CIV with respect to fe but about 2% inferior to PSO-CIV with respect to sr/np. It also solved an addi-
tional problem, namely the 9 dimensional Price Transistor Modelling (PTM) problem. Therefore, Table 2
clearly shows the effectiveness of the remedies R1 � R3 suggested in Section 3.1. Next we conduct the numer-
ical studies with the new algorithms, PSO-RPB and PSO-HS, where we will also study the effect of remedy R1.

5.3. A numerical study of PSO-RPB and PSO-HS

In this section, we study the effect of the remedies, R1–R3, in the new algorithms to determine which rem-
edy suites which algorithm. Again we use 50 problems used in Table 2.

We begin with PSO-RPB. The objective here is to determine which of the remedies is more effective than the
others. For this we summarize the total results of various implementations of PSO-RPB in Table 3, where we
have used similar notations as in Table 2. All the algorithms in Table 3 were successful in 44 problems, except
Table 3
Comparison of PSO-RPB on 44 problems

Version PSO fe sr

3 PSO-CIV(0.6,2,2)=PSO-CIV 3147039 3699
7 PSO-CIV ð0:6;C1;C2ÞR3 1246428 3697
8 PSO-CIV ðxk

i ; 2; 2Þ
R2 2557358 3710

9 PSO-CIV ðxk
i ;C1;C2ÞR2;R3 1155143 3660

10 PSO-CIV ð0:6; 2; 2ÞR1=PSO-RPB 1033327 3701
11 PSO-CIV ð0:6;C1;C2ÞR1;R3 607018 3665
12 PSO-CIV ðxk

i ;C1;C2ÞR1;R2;R3 482908 3618
13 PSO-CIV ðxk

i ; 2; 2Þ
R1;R2 1353226 3622



Table 4
Comparison of PSO-HS on 44 problems

Version PSO-HS fe sr

14 PSO-HS ð0:6;C1;C2; �1ÞR3=PSO-HS 1094122 3702
15 PSO-HS ðxk

i ;C1;C2; �1ÞR2;R3 809772 3665
16 PSO-HS ðxk

i ; 2; 2; �1ÞR2 2328808 3612
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version 9 which was able to solve 45 problems. Results in Table 3 are therefore based on 44 problems, where
we have also presented the results of the versions 3,7–9 of PSO-CIV of Table 2 on 44 problems for the purpose
of comparison.

Results of the versions 10–13 in Table 3 clearly show that PSO-RPB, which implements remedy R1, is supe-
rior to all other implementations, versions 11–13, that combine R1 with other remedies. In particular, these
variants are much inferior to PSO-RPB with respect to sr. PSO-RPB is about 67% superior to PSO-CIV with
respect to fe while it achieves almost the same sr. Moreover, PSO-RPB is also better than the other implemen-
tation of PSO-CIV, namely the implementations of PSO-CIV, namely the implementations in versions 7 and 9.
Version 8 achieves slightly better sr than PSO-RPB but this was achieved at a much higher cost in fe. The
design of PSO-RPB is therefore clearly justified.

We now study PSO-HS. This is a hybrid of PSO-CIV and DE. PSO-HS implements R3 only. We study the
effect of R2 and R3 in PSO-HS via (17). Using the earlier notation we denote PSO-HS by PSO-HS(0.6, C1, C2,
�1)R3, where the nonzero parameter �1 indicates the activation of DE position generation using (18) and (19).
All implementations of PSO-HS solved 44 problems. We present the summarised total results on 44 problems
in Table 4.

Table 4 shows that PSO-HS with R2 is the worse performer, although it is much superior to PSO-CIV, see
for example version 8 in Table 2 or Table 3. On the other hand, a joint implementation of R2 and R3 reduces
both fe and sr. Overall best results are therefore obtained by PSO-HS.

Finally, we compare the original PSO-CIV with its new variants PSO-RPB and PSO-HS. Results obtained
by versions 3,10 and 14 suggest that all three achieved very similar sr. However, PSO-RPB and PSO-HS are
about 67% and 65% superior to PSO-CIV respectively, in terms of fe. While these results are considerable
improvements on PSO-CIV, we further compare the new algorithms with other variants of PSO and with
DE in the next section.

5.4. Comparisons and discussions

Having shown the superiority of the new algorithms over PSO-CIV we now compare PSO-RPB and PSO-
HS with other algorithms with a full set of results. In particular, we compare the new algorithms with PSO-C
and PSO-DIV and with a potential competitor, e.g., DE. First we compare the algorithms using 50 problems
of dimension up to 20 and then we compare them again with four more problems of dimension 30. In the first
test set, there are 5000 runs in total. We note that none of the algorithms succeeded in finding the global min-
imum for four 10 dimensional functions, namely Epistatic Michalewicz (EM), Salomon (SAL), Price’s Tran-
sistor Modelling (PTM) and Shekel’s Foxholes (SF) and 9, 17 dimensional Storn’s Tchebychev (ST) functions.
Except for these six problems, all algorithms have a positive sr for all the other 44 problems. Therefore, results
for these six problems are not reflected in our presentation in Table 5. The results of PSO-DIV, PSO-C, DE
along with the results of the new PSO algorithms using 44 problems are presented in Table 5. The first and
second columns of Table 5, respectively, represent the acronym of the problems and the corresponding dimen-
sions. The tr in the last row is the total fe and sr.

The total results show that amongst all PSO variants PSO-RPB and PSO-HS are very much comparable
while PSO-DIV is superior to PSO-C. On the other hand, the new variants, PSO-RPB and PSO-HS, are much
superior to PSO-C in terms of fe and sr. The new variants are also much more superior to PSO-DIV in terms
of fe while PSO-DIV outperforms the new algorithms by about 30 sr. This is because PSO-DIV has 93% suc-
cess rate on Schwefel problem (SWF) while the new algorithms have only about 5% success. In terms of fe,
PSO-RPB and PSO-HS, are superior to PSO-DIV by about 58% and 56%, respectively.



Table 5
Comparison of DE, PSO-RPB, PSO-HS, PSO-C and PSO-DIV on 44 problems

P n DE PSO-RPB PSO-HS PSO-C PSO-DIV

fe sr fe sr fe sr fe sr fe sr

H6 6 7053 95 8420 60 8675 59 87216 52 14098 46
ML 10 256730 22 26100 7 47900 8 23873 7 50650 6
MRP 2 41474 56 3046 49 11007 53 56756 61 50026 53
MGP 2 1312 70 2766 81 2526 75 6137 89 4485 82
NF2 4 79249 96 35581 100 74956 100 199035 100 175060 100
PRD 2 3024 92 3066 63 8072 55 21816 84 16733 79
RG 10 93991 100 46100 5 43633 4 453377 7 370786 5
RB 10 500100 1 500100 86 464075 83 495441 13 500100 2
SF1 2 3998 79 6253 27 11091 32 37587 49 92943 37
SWF 10 34875 100 32246 5 27100 6 70814 4 49236 93
S5 4 5824 92 6641 32 6030 31 107246 23 44227 31
S7 4 5346 95 6860 41 6078 53 103739 51 43489 59
S10 4 4822 99 6747 57 5602 47 91496 62 54172 65
WP 4 16286 98 30946 100 68447 100 200040 97 199820 98
ACK 10 25237 100 36116 100 29187 100 31332 100 41313 100
AP 2 723 100 1784 100 1637 100 2620 100 3487 100
BL 2 1012 100 2083 100 1833 100 19681 100 8845 100
B1 2 988 100 3411 100 1806 100 3484 100 3177 100
B2 2 973 100 3317 100 1818 100 2567 100 3202 100
BR 2 1305 100 2652 100 2018 100 43735 100 38871 100
CB3 2 923 100 2226 100 1642 100 2484 100 2195 100
CB6 2 1127 100 2561 100 2390 100 48148 100 27566 100
CM 4 2238 100 5546 100 4024 100 5939 100 5598 100
DA 2 1358 100 4301 100 2115 100 8375 100 13852 100
EP 2 1125 89 2450 88 1619 96 2678 89 2175 75
EXP 10 10234 100 15354 100 13089 100 16269 100 26466 100
GP 2 884 100 2817 100 1698 100 3049 100 3186 100
GW 10 85129 100 19916 100 14475 100 20661 100 31658 100
GRP 3 3548 97 7037 100 11316 100 23855 100 45829 100
H3 3 1238 100 3564 100 2948 100 4080 100 3483 100
HV 3 3835 98 7823 100 5363 100 5464 100 4849 100
HSK 2 738 100 1909 100 1560 100 2324 100 1609 100
KL 4 1925 100 2677 100 2408 100 4691 100 3966 100
LM1 3 1420 100 3402 100 2924 100 6757 100 5534 100
LM2 10 11256 100 16440 100 14115 100 19366 100 26016 100
MC 2 824 100 1701 100 1587 100 2155 100 1038 100
MR 3 3157 78 4413 100 6573 100 10287 100 6629 100
MCP 4 3829 100 4299 100 3964 100 2685 100 1877 100
NF3 10 75949 100 58446 100 100370 100 483343 100 306301 100
PP 10 15411 100 25110 100 16699 100 19493 100 29773 100
PQ 4 5852 100 7484 100 5360 100 8833 100 12883 100
SF2 2 2236 100 5742 100 2930 100 7880 100 8223 100
SBT 2 2430 100 4206 100 6216 100 90476 100 55842 100
SIN 20 64016 100 59668 100 45246 100 49608 100 88218 100
tr 1385004 4057 1033327 3701 1094122 3702 2906892 3688 2479459 3731
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A comparison of the new algorithms and DE shows that DE is superior to the new algorithms with about
350 successes in 4400 runs. A close look at the individual sr in Table 5 shows that this difference was caused by
the Shekel family and SWF. In the former DE has about 100% sr while the new algorithms have less than 44%
sr and in the latter DE has 100% sr while the new algorithms have barely 5% sr. However, DE is inferior to
PSO-RPB and PSO-HS by 25% and 21% respectively, with respect to fe. Moreover, for the difficult problems
in Table 5, where success rate is less than 100%, DE, on average, used more fe than the new algorithms. It is
therefore quite clear that there are circumstances, e.g., for the case of expensive function calls, where the new
algorithms certainly have a role to play.



Table 6
Comparison in higher dimensions

P PSO-CIV PSO-RPB PSO-HS DE

fe sr fe sr fe sr fe sr

ACK 365160 100 335040 100 462940 100 257960 100
GW 244770 100 193950 100 103350 100 244000 100
SIN 232740 100 201300 100 96840 100 158275 100
tr 842670 730290 663130 660235
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Finally, we compare the new PSO algorithms with their original counterpart and with DE. For this com-
parison we took four 30 dimensional problems, namely the Ackley function (ACK), the Griewank function
(GW), the sinusoidal function (SIN) and the Rosenbrock function (RB). Except RB, all three problems were
solved by all algorithms. Total results of the four algorithms are presented in Table 6. Since all the algorithms
have 100% success, we only compare the total fe. Results show that within the PSO variants, PSO-CIV is the
worse performer and PSO-HS is the best. Although the overall best is DE the difference between PSO-HS and
DE is negligible and therefore they are comparable.

6. Conclusion

In this paper, two new particle swarm optimization (PSO) methods are proposed. Our main contribution is
the modification of the velocity update rule and the hybridization of the position update rule of particle swarm
optimization. In particular, we incorporated a randomized personal best in the cognitive component of the
velocity update rule and hybridized the position update rule with the differential evolution trial point gener-
ation operators. The new algorithms are tested on a large set of test problems. The results clearly demonstrate
that the incorporation of the new features makes PSO conducive to convergence. A comparison with other
variants of PSO suggested in the literature shows that the new PSO are much more superior in efficiency.

A comparison of the new PSO with differential evolution suggests that they both have strengths and weak-
nesses and therefore they certainly have different roles to play in global optimization.

Further research is underway for designing a PSO algorithm for high dimensional problems with equality
and inequality constraints.
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