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The repulsion algorithm, a new multistart method for global

optimization

A.E. Sepulveda

Department of Mechanical, Aerospace, and Nuclear Engineering, University of California, Los Angeles, CA 90095, USA

L. Epstein

Department of Biostatistics, The Johns Hoplins University, Baltimore, ME 21205, USA

Abstract This paper proposes a new multistart algorithm
to find the global minimum of constrained problems. This al-
gorithm, which in this paper is called the repulsion algorithm, ef-
ficiently selects initial design points for local searches. A Bayesian
approach provides the stopping rules, The method uses infor-
mation from the previous sampling points and the corresponding
sequences generated by local searches to select new initial points.
This approach increases the probability of finding all local minirna
with fewer local searches. Numerical example problems show that
compared with traditional multistart methods, the repulsion algo-
ithm reduces significantly the number of local searches required
to find the global minimum.

1 Infroduction

In structural and mutidisciplinary design optimization as well
as in highly nonlinear problems and mechanical design prob-
lems, it is common to find either disjoint or nonconvex design
spaces, Examples are grillage structures for the static case
(Kavlie and Moe 1971, Moses and Onoda 196¢) and struc-
tures subject to dynamic loads. For the steady state case,
Johnson (1976) and Mills-Curran and Schmit (1985) show
that near resonance conditions usually produce disjoint fea-
sible regions with large dynamic displacements, which are
highly nonlinear functions of the design variables. Cassis
and Schmit (1976) and Sepulveda and Jin (1992) preseni
problems that involve transient behaviour constraints with
severe nonconvexities and disjoint feasible regions. For these
problems, where the objective function values at disbinct lo-
cal mintma may be substantially different, an algorithm that
converges to a local minimum is not satisfactory.

This article introduces the repuision algorithm, a new
scheme for approximately solving the global optimization
problem, '

d" i '~= i t 1
find # such that f ;Igﬂ_f(«’c) (1

where f is the objective function, and K is the set of the
feasible designs.

‘There are two kinds of algorithms to solve the optimiza-
tion problem equation {1) states, namely deterministic and
- stochastic. Deterministic algorithms guarantee convergence
to the global optimum only for certain classes of objective
functions and/or constraint functions. Stochastic algorithms

randomly generate points in the design space to initiate lo-

cal searches. Stochastic algorithms guarantee convergence

to the global minimum only asymptotically, that is roughly
speaking, the probability that the algorithmn finds the global
minimum converges to one as the number of local searches
tends to infinity: The repulsion algorithm is of the stochastic
kind.

A brief review of the essentials of multistart methods is
presented. A description of the repulsion algorithm will fol-
low. Mutistart methods enumerate all local minima with
local optimizations initiated from a set of random points dis-
tributed uniformly over the region K. The basic steps are as
follows (ses for example, Rinncoy-Kan and Timmer 1986).
(1) Select # at random from a uniform distribution on K.
(2) Starting from z, use a local optimizer to find the local

minimum z*.

(3) Check stopping rules. If a termination criterion is satis-
fied, stop sampling and the local minimum with the lowest
objective function value estimates the global minimum. If
the termination criterion is nof satisfled, go to step 1.

The repulsion algorithm is a multistart method, as it tries
to find all local minima starting local searches from a nurnber
of different points in K. A review of the literature indicates
that only the uniform distribution has been used to gener--
ate the starting points. In contrast, the repulsion algorithm
does not use this distribution, bul instead it conveniently
changes the distribution after each local seazch. The sequen-
tial change of the sampling distribution attempts to avoid
spending local searches in regions where it is unlikely to find
a new local minimum, i.e. it attempts to reduce the number
of times that step 2 is executed. )

In global optimization the number of local minima is usu-
ally unknown but assumed to be finite. Multistart methods
sequentially generate points in X and use them fo start lo-
cal searches. The problem of deriving stopping rules then
arises, that is, of deciding when fo stop the sequence of lo-
cal searches. Multistart methods do not necessarily find the
global minimum, but the probabilistic structure provided by
the sampling distribution for the starting points allows one
to make inferences about the number of local minima. One

* then uses these inferences to determine when to stop the se-

quence of local searches. If costs are associated with the
local searches, stopping rules may be derived using elernents
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of statistical decision theory.

Two assumptions supporting the repulsion algorithm, and
some stopping rules, are that the problem stated in (1) ad-
mits a finite number of local minima 2¥,i=1,..., N, in K
and that the regions of attraction form a partition of K. A
region of attraction is a subsei of the feasible domain associ-
ated with a local minimum, such that if a local optimization
procedure starts from any peint in this subset, then the se-
quence of points generated converges to that local minimum.
More precisely, if «* is a local minimum, then the region
of attraction R(z*) associated with z* is the subset of X
such that if a local minimization procedure {4) starts from
any point in R(z*), then the sequence of points A generates
converges to ¢*. With these definitions, if the algorithm A
starte from an initial design =g € R(2*), then the points
243 = A(z;) € R(z*),i > 0, i.e. the points generated by
the algorithm belong to the same region of attraction R(z*).
It is important to note that for a given problem, the defini-
tion of ita regions of atkraction depends on the optimization
procedure.

2 Stopping rules for multistart

Stopping rules developed by Boender and Rinncoy-Kan
(1987) and by Betro and Schoen (1987) are reviewed briely.
Whereas the former reference uses inferences about the sizes
of the regions of attraction, the latter uses inferences about
the values of the objective function at the local minima. With
stochastic multistart methods, each local minimum that alo-
cal search finds is viewed as an observation from an unkmown
distribution. For this reason the term “sampling” sometimes
refers to a local search, that is, to the process of obtaining
& new observation, and sometimes refers to the process of
generating starting points for local searches.

After n local searches, the approach of Betro and Schoen
(1987) uses the available data [z}, t; = f(z})], i =1,...,m,
to décide whether o continue with new searches or to stop,
They assume that ¢;, i,...,7, are independent observations
from a random variable T whose distribution is unknown. Let
F denoke this unknown distribution function. The Bayesian
approach requires specifying a prior distribution reflecting
one’s beliels about F'. As the observations f;,4 = 1,...,n,
become available, the prior distribution is updated to obtain
a posterior distribution using Bayes’ theorem. Following a
Bayesian approach, Betro and Schoen (1987) derive optimal

stopping rules for the multistart procedure. In addition to .

a prior distribution, an optimal stopping rule requires a loss

function expressing the cost associated with stopping after n

local searches. Betro and Schoen (1987) use the loss function,

L(ty, ... taje) =1(y) +ne, {2)

where ta) = . l{lin t;, and ¢ is the cost of a local search,
=1,..n

expressed in units of f(z), the objective function.

The decision rule is derived from minimizing the expected
posterior cost. Optimal sequential rules compare the cur-
rent cost given by (2) with the expected fotal cost of mak-
ing more observations. Deriving such stopping rules appears
to be very difficult, and therefore practical suboptimal rules
are sought. Betro and Schoen (1987) indicate that “one-
stage look ahead” (1-sla) rules are adequate in practical sit-

nations. The l-sla rule prescribles to stop the sequence of
local searches as soon as

LMtg,. . atnse) = Lt ... nj€), (3a)
where
L, tnie) =

min {L(tl, v ortnic), BT TL(t, o, Tt c)]} . (3b)

and ETﬂ+1(») is the expected value with respect to the dis-
tribution of the observation T4y conditional on the first
n observations. That is, this rule terminates the sequential
sampling when the present cost is lower than the total ex-
pected cost of a new local search. Betro end Scheon (1987)
use a class of priors on the distribution functions F() origi-
nally developed for nonparametric Bayesian inference. They
use simple homogeneous processes to generate prior proba-
bility measures for the distribution functions F(3) that are
easy to update. Within this framework F(f) is a stochastic
process whose distribution is characterized by a function y{t)
and a positive parameter A.

For a simple homogeneous process F({), the prior expec-
tation
B[F@)]=1-e"T0A, ()
reflects an initial guess for the unknown F(t). X Fo(t)
denotes one’s initial guess, then (4) implies that ¥(t) =
—Alog[1 — Fp(t)]-

Iu addition, condition (3a) reduces to

~Hn)
[ n-fanaece, (6)

where Fyn(t) = E[F(1)|t1,...,ta;¢] is the posterior expecta-
tion of F(t) given the observations {1,...,15.

Betro and Schoen (1987) suggest taking A = 1 and 2
sensible function Fy(£) that makes the evaluation of (5) easy.
For a minimization problem, their suggestion translates to

3 @01 s
1~ Fy(t) = [1 (1v2) e ]’ =e 6
o) { 05e~2V2-D(e-8)/b 1o @

where @ and b > 0 are, respectively, a location, in fact the
mode as well as the median, and a scale parameter for the
density associated with Fy. This density is not symmetric.
The parameter b may be assessed using the fact that the
probahility of a value lower than a—4.07b and the probability
of a value higher than a + 4.72b are both 0.01. With these
choices the i-sla rule reduces to

for t(n) >a

ni N exp(~3){—a +[o5(1 - 1V~ 242+ 0.5]5+
t("-) + (2 — \/5)5 exp [(a —t(ﬂ))/b] +
05(1= 1/v2) exp [2a )] } < e, (7a)

for t(n) La

n::- )‘cxp(—S) 4(\/51“ 1)&exp [—2(\/5-— 1Ya t(n))/b] >,
(7b)



where
§ =3 [roay — 1) mis +3)] (82)
i=l1
nj = {distinct observations = t(j}} ) (8b)
mjmn—zﬂi=’mj+“j- (8¢c)
5y

In contrast with the previous approach, Boender and

Rinnooy-Kan {1987) develop stopping rules on the basis of
the sizes of the regions of attraction. Some rules combine the
cost of a search with the cost of premature stopping, while
others do not consider these costs. Rules that do not use
costs are, roughly speaking, of two types. One fype com-
pares, at each iteration, the number of different minima that
have been detected with an estimate of the total number of
minima. The second type uses an estimate of the relative
sizes of the regions of attraction that the algorithm has not
detected. The rule this paper uses prescribes to stop per-
forming new local searches as soon as the posterior expected
relative size of the detected regions,
- loin, )
exceeds a user specified number £, where w denote the num-
ber of distinct local minima detected by the algorithm after
n local searches,

3 The repulsion algorithm

The repulsion algorithm is a multistart method that sequen-
tially generates starting points for local searches. Let z de-
note any points that the algorithm has previously visited i.e. z
is either a starting point for a local search or an iterate that
a local search has penerated. If is assumed that any local
search converges to a local minimum. Therefore, z belongs
to the region of attraction of some local minimum. It is rea-
sonable to assume that points near # are in the same region
of atiraction as z and therefore, one would like to initiate the
subsequent local search away from z to increase the probabil-
ity of starting that search in a different region of attraction.
In fact, one would like to initiate subsequent local searches
away from any points the algorithm has already visited. This
15 precisely what the repulsion algorithin does. 1o generate a
starting point, the repulsion algorithm first generates y € K
according to a uniform distribution and then transforms y to
a point « 1o be used as a starting point. The transformation
attempts to reach regions of attraction which may not have
been detected by earlier samples. To accomplish this, each
previously visited point z repels y away. The total repulsion
on y is the sum of the individual repulsions. ‘Fhe repulsion
z exerts on y is in the direction of y — z and its magnitude,
A(r), depends only on the distance from z to g, » = d{z,y).
There are many choices for A{r), but only linear repulsions
are considered,

ay={ g B 05r<m o
where § = a/rp and 0 € o < 1.

The point y is repelled to the point u given by
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¥z
et ‘ (11)
The constraints on « and # are desirable for two reasons.
First, they guarantee that the repulsion does not exceed ry.
Second, if y' and y are two points such that ' = d(z2,4) <
" = d{z,y") then {|Ju(y’, 2)}| < ||u(x",2)]]. In other words,
the constraints avoid the point 3 jumping over u” to a peint

u = u(y,z) = y-+ Ar)

- ! further away from z than u".

Assume now that the algorithm has visited the points
#1y..+, #zv. The total repulsion on y is the sum of the repul-
sions due to each of the z}s, that is, the repulsion algorithm
repels ¥ to the point

1
u= Alr) L=
¥+ ,; {r:) -
where A(r;) is given by (10) with »; = d{y, 2;)..

Observe that d[u(z, ¥}, 2] = AN +r(1 —efr) +e > a
Therefore, if the algorithm has visited only the point z, then
with the repulsion given by (10) there is zero probability of
sampling the next starting point within a ball of radius a
about z. This does not imply that the algorithm will never
start a search within such ball. In fact, as the number of
points visited by the algorithm increases, the total repulsion
away from z will decrease.

t
H

(12)

4 Numerical examples

The following examples assess the performance of the repul-
sion algorithm. These examples were chosen because they
have known nonconvexities in the design space. The program
DOT (Vanderplaats and Hansen 1989), a feasible directions
local optimizer, was used for the local searches.

4-1 Problem 1. Levy -Gomez

This example, introduced by Levy and Gomez (1985), can be

stated as

min f(xy1,29) = U.l(z% + a:%) )

st g(zy,z9) = Zein(2mzy) —sin(dmzy) € 0, (13)
-1< 2,29 < 1.

This problem has at least 24 local minima and the feasi-
ble domain is not connected. There is one global minimum,
£] = & = 0 with f* = 0. Levy and Gomez (1989} used the
tunneling algorithm and report results for 20 runs. For these
20 runs, the average number of objective function evulations
is 6256 and the average number of constraint function evual-
tions is 835. Ratschek and Rukne (1988) solved {13) with an
interval arithmetic-based algorithm. Their solution required
415 interval evaluations of the cbjective function and 271 in-
terval evalnations of the constraint function.

To compare the performance of the repulsion algorithm
with the Levy-Gomez (1969) tunneling algorithm and the
Ratschek-Rukne (1988) interval arithmetic algorithm, prob-
lem (13) was solved one hundred times. Table I semma-
rizes the results. Table 1 indicates that for a repulsion with
a = 0.2 the repulsion algorithm performed better than any of
the other algorithms. In fact, it required only about 20% of
the function evaluations of multistart with no repulsion, with
similar savings when compared with the interval arithmetic-
based algorithm, Compared with the tunneling algorithm,
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Table 1. Average results for 100 runs: problem 1

7o = (.25
ne repulsion | e =0.1 | « =0.2

No. successful runs 92 96 98
No. local searches to

reach global minirmum 1.038 1.020 i.021
No. abjective evaluations 345 442 75
No. constraint evaluations 356 448 75
No. gradient evaluations 332 423 73

- the repulsion algorithm with & == 0.2 required only about
10% of function evaluations.

Table 1 also shows that the choices of o may strongly af-
fect the performance of the repulsion algorithm. If the region
of attraction of & local minimum is large, then small values
of & may not suffice to repel starting points to regions of
attraction that the algorithm has not detected. This might
have been the reason for the decreased performance of the re-
pulsion algorithm with & = {.1. This example suggests that
if local searches often converge o the same local minimum,
then, restarting the method with a higher & may speed the
detection of new regions of attraction.

Global minimization methods may also be evaluaied on
the basis of the probability that they will find the global
mininmm. With this second criterion, Table 1 shows that,
regardless of the value of @, the repulsion algorithm per-
formed befter than the nmulistart with no repulsion, since
it increased the perceniage of cases in which the global min-
imm was found from 92% to 96%.

4.2 Problem 2. Grillage siructure

The second problem involves the two-beam grillage structure,
shown in Fig. 1, subject to distributed static loads. Hajela
(1990), Kavlic and Moe {1971), and Sepulveda and Schmit
(1993) have discussed this example. The design variables
are the cross-sectional areas of the beams (z1,%3). These
are related to the moments of interia (I7, Iy) and the section
modulus (Z7, Z9) by empirical relations given by (Kavlie and
Moe 1971):

Z; = (m;/1.48)1:62
I; = 1.007(x;/1.48)>8 |

(14a)

i=1,2, (14b)

The structure is designed for minimum weight subject to con-.

straints on stresses (¢* = 20ksi) at the centre point and

at the location of the maximum bending moment along the
span. Figure 2 shows the design space for this problem, where
one can clearly see that the design space is nonconvex.
First, the regions of attraction for each local minimum
were sel to approximately the same size by considering 1 <
#1 € 30 and 1 < »9 < 50. Figure 3 plots the average number
(over 100 runs) of local searches to reach the globsal optimum
for the first time versus ¢ for different values of 7, 1.e. Fig.
3 shows the effect of the repulsion. From this figure, one
observes that the repulsion algorithm effectively reduces this
number, and more so when rg is larger. Next, this example
was solved with 1 € z1 < 26 and 1 < 29 < 50, which reduces
the area of the region of attraction of the global minirmum
to appraximately 5% of the area of the regions of attraction
of the other two local minima. Figure 4 presents the results
for both cases. Observe that the repulsion improves perfor-
mance, especially for the second case where the area of the

&
& = 200 ksi
E = 30000.0 ksi Loksi /‘
W0 in
L0 ksi

Fig. 1. Example problem 2: grillage structure

35
304
{5.5, 25.5)
o5 . W = 3607
Feasible region
: 13.8,18.8)
20 (
o % W = 3564
&
15
10 (234, 7.1)
5 Globat optlmum W= 3198
O T T T T T 1)
0 5 19 15 20 25 30
xq {In?)

Fig. 2. Design space for problem 2: grillage structure

region of attraction associated with the global optimum is
sinaller.

4.8 Problem 3. Disjoint design space

The third example involves the symmetric beam structure
shown in Fig. 5. The beam is simply supported at both ends,
has a length of 1000 cm and a squre cross-section (20 em
x 20 cm) with independent flange (13) and web (i) well
thickness. The material propertles are p = 2.768 x 1073
and E = 7.1 x 108 N/m?. The beam is subjected to two
independent load conditions at the midspan given by

fl {t) = 4000 NSiIl .!?21, 'Ql = 5 Hz
and
f2(t) = 5000 Nsin 22, {25 = 13 Hz.

The design variables for this problem are the web and
flange thickness (3, and #j) of the beam. The side constraints
for these variables are 0.5 cm < 1,4 < 10.0 cm. There are
behaviout constraints on the midspan vertical displacement
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In this figure, shaded arcas are infeasible design points. From
this figure, it is also observed that each feasible component
is not convex. In addition, Fig. 6 also shows the contours of
the objective function for different weights, from where it is
seen that the global optimum is obtained at {j =t = 0.5

with a weight of 107 kg.

Number of Local Searchaes
io Reach Global Minimum
g g
] 1

3.00 T T 1 T T T T
a 1 2 3 4 5 ] 7
Alpha
Fig. 3. Repulsion effect, case 1: grillage structure
20+ 1.<x, <26,
1.2x,<50, Mo Aepuision
g 18+ -
5 g R
[ E ~% e
a°g 16 To-F Ty
‘n'i . 1 FASE A
—_ e rd ~
8o N o
pu. ”
—0-‘:8, T4 e
50 .
5 g 4o =8 .
A
g o2
z2 10 . .
& e T T T T T T
o] H 2 3 4 5 B 7
Alohg
Fig. 4. Repulsion effect, case 2: grillage structure
3%
X
20 em d L th
B i
20 e
CFOSS section
f(t)I
i }
A P

1000 cm

Fig. 5. Example problem 3: beam structure

(Jw] < 1.0 cra) and the maximum bending stress (o] < 20
kst}. The chjective function is the total weight of the beam.

There are two independent load conditions for the prob-
lem, and there is no damping, therefore, due to fesonance

conditions, the design space is disjoint, as shown in Fig. 6.

10

3 :

b= S

- @!

E =

i T T T o
=] © © ~ o o
2
x2 {em)

Fig. 6. Example problem 3: design space

‘The parameters for this problem were a = 100, § = 100,
e =0.01, and ¢ = 99%. Two different strategies were used to
solve the problem. The first strategy used only feasible initial
designs to start local searches. The second strategy used both
feasible and infeasible initial designs. In the second case, if
the local optimizer did not produce a feasible design when
starting from an infeastble point, then the complete sequence
was deleted for repulsion purposes.

Figure 7 shows the number (average over 100 runs) of
objective and consiraint function evaluations as a function
of « for both strategies. Since the problem was solved us-
ing finite differences, Fig. 7 includes the number of function
evaluations necessary to estimate gradients. From Fig. 7 one
observes that as o increases, i.e. as the repulsion increases,
the nurnber of function evaluations required for convergence
decreases.

Figure 8 shows the average number (over 100 runs) of lo-
cal searches for each of the two strategies. From the figure,
one observes that the number of local searches is substan-
tially larger when both infeasible and feasible points are used
as starting points. This difference indicates that it is more
efficient to start local searches from feasible points for the
numerical implementation for local searches used in this pa-
per. It is possible to assume that when other Jocal optimizers
are used (e.g. dual methods) the difference might not be as
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severe. Pinally, Fig. 9 shows the number of local searches
(average over 100 runs) to find the global optimum for the
first time. As expected, when « increases, i.e. the repulsion
increases, this number decreases since the probability of ini-
tiating searches in undetected regions of attraction increases,

4.4 Problem 4. Weight minimization of a speed reducer

This test problem is taken from the work of Floudas and
Paradalos {1990) and Chew and Zheng (1988), and involves
the design of a speed reducer for a small aireraft engine. In
the design of speed reducer for small aircraft engines, a pri-
mary concern is the minimization of its weight, which it af-
fects, for instance, the power-rating which is usually stated in
terms of horsepower per engine weight as well as the costs of
material and operations. The design problem can be formu-
lated as a nonlinear minimization problem with constraints
on design parameters including power transmission gas bend-
ing capacity, contact stress, the deflection and stress of shafts,
and various ¢onstraints on the dimension of the weight re-
ducer. The resulting optimization problem has the follow-
ing form. Details on the meaning of the parameters and the
derivation of the objective function can be found in the paper
by Golinski (1970):

min f(z) = 0.785e123(3.33323 + 14.933x3 — 43.003) —
1.508zy (o3 + o2) +7.477(28 + o2 ) +0.785(z42% + 2508} (15a)
Subject to

oycioy 2 27, zye3ef > 3975,

soxgzzay s > 1.93, wzawrtszeg > 1.93,
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g
0.5
[(7452407 20312 + 1691 x 10°] " 25% < 110,
. 0.5
[(7459:53519;;1)2 +157.5 x 106] 273 < 85, (15b)

zoxy < 40, wlwz_l >b, wlwé"l <12,
1.beg -2y < ~19, 1bzy—-25<-19,

and side constraints given by 2.6 < 21 < 3.6,0.7< 29 < 0.8,
17T < 23 €28, T3 € g, w5 < 8.3, 29 € 25 € 3.9 and
§ <=z <55

The problem was solved with ryp = 3 and different values
of x. In all cases the global solution found by the repulsion
algorithm is cssentially the same, with only minor variations
in objective function value. Table 2 shows the best solution
found by the repulsion algorithm and the best solution given
in the work of Floudas and Paradalos (1990). The design
variable values are essentially identical with a difference of
0.4% in the final objective,

Table 2. Optimal solution for problem 4 -

Repulsion Algonithm | Ref. 15
29 3.5 3.5
9 0.9 0.7
z3 17 17
&4 7.3 7.3
39 7.3 7.71
g 3.35 3.35
zy 5.286 5.287
(x) 2983.38 299447
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Figure 10 shows the number of local searches (average
over 100 runs} to find the global optimum for the first time.
The resuliz show, as in the previous examples, that when &
increases (repulsion increases} this number desreases indicat-
ing that with increasing repulsion, the probability of initiat-
ing searches in undetected regions of attraction increases.

& Conclusions

This paper sets forth a multistart method to find the global
oplimmum for nonconvex problems. The repulsion algorithm
generates initial points for local searches to reduce the proba-
bility of nitiating local searches in previously visited regions
of attraction. Numerical results indicate that compared with
classical multistart algorithms, the repulsion algorithm re-
duces both the number of local searches to find the global
optimum for the first {ime and the number of function eval-
uations.

The introduction of the repulsion algorithm opens a num-
ber of interesting methodological problems. First, the stop-
ping rule of Betro and Schoen (1987) assumes that the min-
irna local searches find are stochastically independent and
identically distributed. This assumption is reasonable when

the starting points are generated independently from the

sarne distribution. With the repulsion algorithm, however,
the repulsion changes the distribution of the starting point
from one local search to the next. This disiribution depends
on the points that previous local searches have generated,
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and therefore, the starting points are not independent, With
this in mind, it might be possible to find a more suitable
stopping rule to use with the repulsion algorithm than the
rule of Betro and Schoen {1987).

It is possible to devise strategies other than the repulsion
algorithm to increase the probability of starting a local search
in an undetected region of attraction. One such strategy con-
sists of generating candidate starting points independently
and according to some distribution, e.g. uniform. After a
candidate has been generated, with probability P one uses
that point as a starbing point, and with probability 1 — P
one does not use it. The probability P might depend on the
distance to points that previous local searches have gener-
ated. One would expect this algorithm fo be sornewhat less
efficient than the repulsion algorithm in that a fraction of the
candidate starting points are rejected,

Tinally, from a standpoint of computational implementa-
tion, storing all visited points can fake substantial storage
i the number of design variables is large. In this case, vis-
ited points that are very close to each other can be replaced
by their centroid, or alternatively by a single point which ap-
proximately generates the same repulsion. In this respect, the
ideas of clustering {see e.g. Rinnooy-Kan and Timer 1986)
conmmonty used for classical multistart algorithms can reduce
the number of visited points for repulsion purposes.
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