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Abstract: A modified version of a common global optimization method named controlled random
search is presented here. This method is designed to estimate the global minimum of multidimen-
sional symmetric and asymmetric functional problems. The new method modifies the original
algorithm by incorporating a new sampling method, a new termination rule and the periodical
application of a local search optimization algorithm to the points sampled. The new version is
compared against the original using some benchmark functions from the relevant literature.

Keywords: global optimization; random search; termination rule

1. Introduction

Global optimization [1] is considered a problem of high complexity with many applica-
tions. The problem is defined as the location of the global minimum of a multi-dimensional
function f (x):

x∗ = arg min
x∈S

f (x) (1)

where S ⊂ Rn is formulated as:

S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn] (2)

In global optimization, many functional problems that need to be solved can have
symmetric solutions—the minimum—without this being the rule. The location of the
global optimum finds application in many areas such as physics [2,3], chemistry [4,5],
medicine [6,7], economics [8], etc. In modern theory there are two different categories
of global optimization methods: the stochastic methods and the deterministic methods.
The first category contains the vast majority of methods such as simulated annealing
methods [9–11], genetic algorithms [12–14], tabu search methods [15], particle swarm
optimization [16–18] etc. A common method that also belongs to stochastic methods is the
controlled random search (CRS) method [19], which is a procedure that uses a population
of trial solutions. This method initially creates a set with randomly selected points and
repeatedly replaces the worst point in that set with a randomly generated point. This
process can continue until some termination criterion is satisfied. The CRS method has
been used intensively in many problems such as geophysics problems [20,21], optimal
shape design problems [22], the animal diet problem [23], the heat transfer problem [24] etc.

This CRS method has been thoroughly analyzed by many researchers in the field,
such as the work A of Ali and Storey, where two new variants of the CRS method were
proposed [25]. These variants have proposed alternative techniques for the selection of
the initial sample set and usage of local search methods. Additionally, Pillo et al. [26]
suggested a hybrid CRS method where the base algorithm is combined with a Newton-
type unconstrained minimization algorithm [27] to enhance the efficiency of the method in
various test problems. Another work is of Kaelo and Ali, in which they suggested [28] some
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modifications to the method, especially in the new point generation step. Additionally,
Filho and Albuquerque have suggested [29] the usage of a distribution strategy to accelerate
the controlled random search method. Tsoulos and Lagaris [30] suggested the usage of a
new line search method based on genetic algorithms to improve the original CRS method.
The current work proposed three major modifications in the CRS method: a new point
replacement strategy, a stochastic termination rule and a periodical application of some
local search method. The first modification is used to better explore the domain range of
the function. The second modification is made in order to achieve a better termination
of the method without wasting valuable computational time. The third modification is
used in order to speed up the method by applying a small amount of steps of a local search
method. The new method introduces a new method to create trial points that was not
present in the previous work [30] and also replaces the expensive call-to-line search method
with a few calls to a local search optimization method.

The rest of this article is organized as follows: in Section 2, the major steps of the CRS
method as well as the proposed modifications are presented; in Section 3, the results from
the application of the proposed method on a series of benchmark functions are listed; and
finally, in Section 4, some conclusions and guidelines for future research are presented.

2. Method Description

The controlled random search has a series of steps that are described in Algorithm 1.
The changes proposed by the new method focus on three points:

1. The creation of a test point (New_Point step) is performed using a new procedure
described in Section 2.1.

2. In the Min_Max step, the stochastic termination rule described in Section 2.2 is used.
The aim of this rule is to terminate the method when, with some certainty, no lower
minimums are to be found.

3. Apply a few steps of a local search procedure after New_Point step in the z̃ point.
This procedure is used to bring the test points closer to the corresponding minimums.
This speeds up the process of searching for new minima, although it obviously leads
to an increase in function calls

2.1. A New Method for Trial Points

The proposed technique to compute the trial point z̃ is shown in Algorithm 2. Ac-
cording to this, the calculation of the test point z̃ does not contain a product with high
values as in the basic algorithm, so that the test point is not too far from the centroid.
This technique avoids vector jumps from the centroid, where it has great gravity in the
calculation for starting the local optimization. This method also considers in the calculation
the current minimum point and not only a random point as in the original technique.
With this modification, knowledge that has already been found in the past is used to create
a new point and in such a way that it is close to the area of attraction of a local minimum.

2.2. A New Stopping Rule

It is quite common in the optimization techniques to use a predefined number of
maximum iterations as the stopping rule of the method. Even though this termination
rule is easy to implement, it could sometimes require an excessive number of functions
calls before termination; therefore, a more sophisticated termination rule is needed. The
termination rule proposed here is inspired by [31]. At every iteration k, the variance σ(k) of
the quantity fmin is calculated. If the optimization technique did not manage to find a new
estimation of the global minimum for some iterations, then probably the global minimum
has been discovered and the algorithm should terminate. The termination rule is defined
as follows; terminate when:

σ(k) ≤ σ

(
klast

)
2

(3)

The term klast represents the last iteration where a new global minimum was located.
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Algorithm 1: The original controlled random search method. The basic steps of
the method

Initialization Step:

1. Set the value for the parameter N. Typically this value could be set to N = 25n.
2. Set ε as a small positive value, used in comparisons.
3. Create randomly the set T = {z1, z2, ..., zN} from S.

Min_Max Step:

1. Calculate the points zmin = argmin f (z) and zmax = argmax f (z) and their
function values

fmax = max
z∈T

f (z)

and
fmin = min

z∈T
f (z)

2. If
∣∣ fmax − fmin

∣∣ < ε, then goto Local_Search Step.

New_Point Step:

1. Select randomly the reduced set T̃ =
{

zT1 , zT2 , .., zTn+1

}
from T.

2. Compute the centroid G:

G =
1
n

n

∑
i=1

zTi

3. Compute a trial point z̃ = 2G− zTn+1 .
4. If z̃ /∈ S or f (z̃) ≥ fmax then goto New_Point step.

Update Step:

1. T = T ∪ {z̃} − {zmax}.
2. Goto Min_Max Step.

Local_Search Step:

1. z∗ = localSearch(z).
2. The final outcome of the algorithm is the discovered global minimum z∗.

The amount σ(k) decreases continuously over time as either the method will find a
lower estimate for the global minimum or the global minimum will have already been
found. In addition, this quantity is de facto permanently positive and therefore is a good
candidate for use in termination criteria. If the global minimum has already been found
or the method is no longer able to find a new estimate for it, then this quantity will tend
to zero and therefore we can interrupt the execution of the algorithm when this quantity
falls below a value. This value may be a fraction of the value of σ(k) the last time a new
estimate for the global minimum was found. If we want to allow the algorithm to continue
for several generations, this fraction can be small, e.g., 0.25. If we want it to stop more
immediately, a good estimate for the fraction can be 0.75. A good compromise between
these prices is the 0.5 price chosen here.

3. Experiments
3.1. Test Functions

The modified version of the CRS was tested against the traditional CRS on series
of benchmark functions from the relevant literature [32,33]. The following functions
were used:
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Algorithm 2: The steps of the new proposed method to create more efficient
trial points for the controlled random search method

1. Calculate the centroid G:

G =
1
n

n

∑
i=1

zTi

2. Set G = G + 1
n zmin

3. Compute a trial point z̃ = G− 1
n zTn+1 .

• Bf1 function, defined as:

f (x) = x2
1 + 2x2

2 −
3
10

cos(3πx1)−
4

10
cos(4πx2) +

7
10

with x ∈ [−100, 100]2;
• Bf2 function:

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1) cos(4πx2) +

3
10

where x ∈ [−50, 50]2;

• Branin function: f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10 with

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.
• CM–Cosine Mixture function:

f (x) =
n

∑
i=1

x2
i −

1
10

n

∑
i=1

cos(5πxi)

with x ∈ [−1, 1]n. In our experiments we have used n = 4;
• Camel function:

f (x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2, x ∈ [−5, 5]2

• Easom function:

f (x) = − cos(x1) cos(x2) exp
(
(x2 − π)2 − (x1 − π)2

)
;

with x ∈ [−100, 100]2.
• Exponential function:

f (x) = − exp

(
−0.5

n

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

In the conducted experiments, the values with n = 2, 4, 8, 16, 32, 64, 100 were used,
and the corresponding functions were denoted as EXP2, EXP4, EXP8, EXP16, EXP32,
EXP64, EXP100;

• Goldstein & Price:

f (x) = [1 + (x1 + x2 + 1)2

(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]×
[30 + (2x1 − 3x2)

2

(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)];
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• Griewank2 function:

f (x) = 1 +
1

200

2

∑
i=1

x2
i −

2

∏
i=1

cos(xi)√
(i)

, x ∈ [−100, 100]2;

• Gkls function: f (x) = Gkls(x, n, w) is a function with w local minima, described
in [34] with x ∈ [−1, 1]n. In the conducted experiments, we have used n = 2, 3 and
w = 50, and the functions are denoted by the labels GKLS250 and GKLS350;

• Guilin–Hills function: f (x) = 3 + ∑n
i=1

(
ci

xi+9
xi+10 sin

(
π

1−xi+
1

2ki

))
, with x ∈ [0, 1]n,

ci > 0 and ki being positive integers. In our experiments, we have used n = 5, 10 with
50 local minima in each function. The produced functions are entitled GUILIN550
and GUILIN1050;

• Hansen function: f (x) = ∑5
i=1 i cos[(i− 1)x1 + i]∑5

j=1 j cos[(j + 1)x2 + j],
x ∈ [−10, 10]2;

• Hartman 3 function:

f (x) = −
4

∑
i=1

ci exp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]3 and a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, c =


1

1.2
3

3.2

 and

p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

;

• Hartman 6 function:

f (x) = −
4

∑
i=1

ci exp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]6 and a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

, c =


1

1.2
3

3.2

 and

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

;

• Rastrigin function:

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2;

• Rosenbrock function:

f (x) =
n−1

∑
i=1

(
100
(

xi+1 − x2
i

)2
+ (xi − 1)2

)
, −30 ≤ xi ≤ 30

In our experiments we used this function with n = 20;
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• Shekel 7 function:

f (x) = −
7

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3


;

• Shekel 5 function:

f (x) = −
5

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

, c =


0.1
0.2
0.2
0.4
0.4

;

• Shekel 10 function:

f (x) = −
10

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6


;

• Sinusoidal function:

f (x) = −
(

2.5
n

∏
i=1

sin(xi − z) +
n

∏
i=1

sin(5(xi − z))

)
, 0 ≤ xi ≤ π

In our experiments, we used n = 4, 8, 16, 32 and z = π
6 , and the corresponding

functions are denoted by the labels SINU4, SINU8, SINU16, SINU32;
• Test2N function. This function is given by the equation

f (x) =
1
2

n

∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5, 5].

In the conducted experiments the n has the values 4, 5, 6, 7;
• Test30N function. This function is given by

f (x) =
1

10
sin2(3πx1)

n−1

∑
i=2

(
(xi − 1)2

(
1 + sin2(3πxi+1)

))
+ (xn − 1)2

(
1 + sin2(2πxn)

)
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with x ∈ [−10, 10]. The function has 30n local minima in the specified range and we
used n = 3, 4 in our experiments.

3.2. Results

In the experiments, two different values were measured: the rejection rate in the
New_Point step and the average number of function calls required. In the first case
we measured the percentage of points rejected during the New_Point step, i.e., points
created that are outside the domain range of the function. All the experiments were
conducted 30 times and different seeds for the random number generator were used
each time. The local search method that was used in the experiments and denoted as
localsearch(x) was a BFGS variant due to Powell [35]. The experiments were conducted on
a i7-10700T CPU (Intel, Mountain View, CA, USA) at 2.00 GHz equipped with 16 GB of
RAM. The operating system used was Debian Linux and the all the code was compiled
using ANSI C++ compiler.

The experimental results are listed in Table 1. The column FUNCTION stands for
the name of the objective function. The column CRS-R stands for the rejection rate for the
CRS method, while the column NEWCRS-R displays the same measure for the current
method. Similarly, the column CRS-C represents the average function calls for the CRS
method and the column NEWCRS-C stands for the average function calls of the proposed
method. Additionally, a statistical comparison between the CRS and the proposed method
is shown in Figure 1.

The proposed method almost annihilates the rejection rate in every test function. This
is evidence that the new mechanism proposed here to create a new point is more accurate
than the traditional one. Additionally, the proposed method requires a lower number of
function calls than the CRS method, as one can deduce from the relevant columns and
the statistical comparison. The same information is presented graphically in Figure 2,
where the percentage comparison of times of functional problems is outlined. Additionally,
in the most difficult problems, the proposed method seems to be even more superior to the
original one in number of calls, as the combination of the termination rule together with
the improved new point generation technique terminate the method much faster and more
correctly than the original method.

Additionally, the execution time for every test function was measured, and this infor-
mation is outlined in Table 2. The column CRS-TIME stands for the average execution time
of the original CRS method, the column NEWCRS-TIME represents the average execution
time for the proposed method and the column DIFF is the calculated percentage difference
between the previously mentioned columns. It is evident that the proposed method re-
quires shorter execution times than the original one, and in addition, the difference between
the two methods is more obvious in large problems. This phenomenon is also reflected
in Figure 3, where a graphical representation of the average execution times of the two
methods for the EXP problem for a different number of dimensions is made.
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Table 1. Experimenting with rejection rates.

FUNCTION CRS-R CRS-C NEWCRS-R NEWCRS-C

BF1 1.37% 2523 0.00% 1689

BF2 1.33% 2506 0.17% 1569

BRANIN 16.00% 2014 9.13% 851

CAMEL 1.67% 2235 0.20% 1487

EASOM 51.03% 591 11.43% 635

EXP2 3.03% 1290 0.70% 644

EXP4 2.67% 4688 0.00% 1302

EXP8 2.77% 16,453 0.00% 2601

EXP16 4.00% 47,400 0.00% 5207

EXP32 7.70% 93,520 0.00% 10,414

EXP64 18.80% 135,638 0.00% 13,602

EXP100 38.53% 129,327 0.00% 14,506

GKLS250 3.87% 1784 0.27% 1684

GKLS350 6.43% 3881 0.03% 2088

GOLDSTEIN 3.60% 2154 0.70% 1829

GRIEWANK2 1.20% 2503 0.03% 2742

GUILIN550 8.33% 9129 0.00% 25,333

GUILIN1050 9.63% 30,806 0.00 10,561

HANSEN 47.60% 2643 4.03% 1736

HARTMAN3 9.97% 3009 6.13% 1331

HARTMAN6 13.37% 13,615 0.00% 6091

RASTRIGIN 9.17% 2130 1.33% 2986

ROSENBROCK 0.00% 59,024 0.00% 15,719

SHEKEL5 4.73% 8974 0.00% 2967

SHEKEL7 3.70% 8606 0.00% 3236

SHEKEL10 2.73% 9264 0.00% 3479

SINU4 3.90% 6525 0.00% 2889

SINU8 5.10% 21,561 0.00% 4946

SINU16 8.43% 62,194 0.00% 9539

SINU32 14.40% 135,986 0.00% 18,456

TEST2N4 24.57% 10,198 0.00% 3756

TEST2N5 34.17% 20,850 0.00% 4806

TEST2N6 42.50% 43,290 0.00% 6075

TEST2N7 50.37% 92,658 0.00% 7005

TEST30N3 24.10% 4011 0.00% 5691

TEST30N4 27.30% 7432 0.00% 8579

TOTAL 13.67% 1,000,412 0.86% 208,031
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Table 2. Time comparisons.

FUNCTION CRS-TIME NEWCRS-TIME DIFF

BF1 0.168 0.154 8.33%

BF2 0.180 0.154 14.44%

BRANIN 0.209 0.138 33.97%

CAMEL 0.165 0.141 14.55%

EASOM 0.165 0.151 8.48%

EXP2 0.165 0.143 13.33%

EXP4 0.228 0.152 33.33%

EXP8 0.629 0.187 70.27%

EXP16 3.142 0.299 90.48%

EXP32 14.364 1.082 92.47%

EXP64 60.861 3.932 93.54%

EXP100 144.794 9.386 93.52%

GKLS250 0.592 0.593 −0.17%

GKLS350 0.658 0.599 8.97%

GOLDSTEIN 0.191 0.163 14.66%

GRIEWANK2 0.174 0.166 4.60%

GUILIN550 0.475 0.529 −11.37%

GUILIN1050 1.524 0.453 70.28%

HANSEN 0.217 0.292 −34.56%

HARTMAN3 0.21 0.163 22.38%

HARTMAN6 0.514 0.262 49.03%

RASTRIGIN 0.168 0.16 4.76%

ROSENBROCK 5.31 0.584 89.00%

SHEKEL5 0.321 0.203 36.76%

SHEKEL7 0.302 0.218 27.81%

SHEKEL10 0.325 0.271 16.62%

SINU4 0.283 0.206 27.21%

SINU8 0.897 0.369 58.86%

SINU16 4.775 1.448 69.68%

SINU32 24.413 8.999 63.14%

TEST2N4 0.389 0.19 51.16%

TEST2N5 0.733 0.209 71.49%

TEST2N6 1.714 0.256 85.06%

TEST2N7 4.326 0.264 93.90%

TEST30N3 0.222 0.203 8.56%

TEST30N4 0.324 0.239 26.23%

TOTAL 274.127 32.958 87.98%
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Figure 1. Statistical comparison for the function calls using box plots.

Figure 2. Percentage comparison for time execution between the two methods.
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Figure 3. Time comparison between the two methods for the EXP function for a variety of problem
dimensions.
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4. Conclusions

Three important modifications were proposed in the current work for the CRS method.
The first modification has to do with the new test point generation process, which seems
to be more accurate than the original one. The new method creates points that are within
the domain range of the function almost every time. The second change adds a new
termination rule based on stochastic observations. The third proposed modification applies
a few steps of a local search procedure to every trial point created by the algorithm. Judging
by the results, it seems that the proposed changes have two important effects. The first
is that the success of the algorithm in creating valid test points is significantly improved.
The second is the large reduction in the number of function calls required to locate the
global minimum.

Future research may include the exploration of the usage of additional stopping rules
and the parallelization of different aspects of the method in order to speed up the optimiza-
tion procedure as well as to take advantage of multicore programming environments.
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