
Ειδικά Θέματα Αρχιτεκτονικής και 

Προγραμματισμού Μικροεπεξεργαστών

Ενότητα 2: Σετ εντολών

Διδάσκων: Βαρτζιώτης Φώτιος

Τμήμα Πληροφορικής και Τηλεπικοινωνιών



MIPS Instructions: Overview

 Language of the machine

 More primitive than higher level languages, e.g., no 
sophisticated control flow such as while or for loops

 Very restrictive

 e.g., MIPS arithmetic instructions

 We’ll be working with the MIPS instruction set architecture

 inspired most architectures developed since the 80's

 used by NEC, Nintendo, Silicon Graphics, Sony

 the name is not related to millions of instructions per second !

 it stands for microcomputer without interlocked pipeline 
stages !

 Design goals: maximize performance and minimize cost and 
reduce design time



MIPS Arithmetic

 All MIPS arithmetic instructions have 3 operands

 Operand order is fixed (e.g., destination first)

 Example:

C code:  A = B + C

MIPS code: add $s0, $s1, $s2  

compiler’s job to associate
variables with registers



MIPS Arithmetic

 Design Principle 1:  simplicity favors regularity.    

Translation: Regular instructions make for simple hardware!

 Simpler hardware reduces design time and manufacturing cost.

 Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code add $t0, $s1, $s2
(arithmetic): add $s0, $t0, $s3

sub $s4, $s5, $s0

 Performance penalty: high-level code translates to denser machine code. 

Allowing variable number
of operands would 
simplify the assembly 
code but complicate the
hardware.



MIPS Arithmetic

 Operands must be in registers – only 32 registers provided 

(which require 5 bits to select one register). 

 Reason for small number of registers:

 Design Principle 2:  smaller is faster.    Why?

 Electronic signals have to travel further on a physically larger 

chip increasing clock cycle time.

 Smaller is also cheaper!



Registers vs. Memory
 Arithmetic instructions operands must be in registers

 MIPS has 32 registers

 Compiler associates variables with registers

 What about programs with lots of variables (arrays, etc.)? Use 

memory, load/store operations to transfer data from memory 

to register – if not enough registers spill registers to memory

 MIPS is a load/store architecture

Processor I/O

Control

Datapath

Memory

Input

Output



Memory Organization

 Viewed as a large single-dimension array with access by 

address

 A memory address is an index into the memory array

 Byte addressing means that the index points to a byte of 

memory, and that the unit of memory accessed by a load/store 

is a byte

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data



Memory Organization

 Bytes are load/store units, but most data items use 
larger words

 For MIPS, a word is 32 bits or 4 bytes.

 232 bytes with byte addresses from 0 to 232-1

 230 words with byte addresses 0, 4, 8, ... 232-4 

 i.e., words are aligned

 what are the least 2 significant bits of a word address?

0

4

8

12

...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers correspondingly hold 32 bits of data



Load/Store Instructions
 Load and store instructions

 Example:

C code: A[8] = h + A[8];

MIPS code (load):      lw $t0, 32($s3)
(arithmetic): add $t0, $s2, $t0

(store): sw $t0, 32($s3)

 Load word has destination first, store has destination 
last

 Remember MIPS arithmetic operands are registers, 
not memory locations

 therefore, words must first be moved from memory to 
registers using loads before they can be operated on; 
then result can be stored back to memory

offset addressvalue



A MIPS Example

 Can we figure out the assembly code?

swap(int v[], int k);
{ int temp; 
temp   =  v[k];
v[k]   =  v[k+1];
v[k+1] =  temp;

}

swap:
(pseudo) muli $2,$5,4 #sll $2,  $5,  2

add  $2,$4,$2 #
lw $15,0($2) #Ex. 110 -> 11000
lw $16,4($2) #Ex. 6*(2^2)-> 24  
sw $16,0($2) #Base address of v = $4
sw $15,4($2) #addr_v[k] = $4 + $2
jr $31

A logical left shift by N bits can be 

used as a fast means of multiplying 

by 2^N (2 to the power of N). So 

the instruction sll $t0, $s0, 2 is 

multiplying $s0 by 4 (2^2) and 

writing back to $t0

Index k k size in #BAddr. offset



So far we’ve learned:

 MIPS

 loading words but addressing bytes

 arithmetic on registers only

 Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3

sub $s1, $s2, $s3 $s1 = $s2 – $s3

lw $s1, 100($s2) $s1 = Memory[$s2+100] 

sw $s1, 100($s2) Memory[$s2+100]= $s1



Machine Language

 Instructions, like registers and words of data, are also 32 bits long

 Example:   add $t0, $s1, $s2

 registers are numbered, e.g., $t0 is 8, $s1 is 17, $s2 is 18

 Instruction Format R-type (“R” for aRithmetic):

10001 10010 01000 00000 100000000000

6 bits      5 bits      5 bits      5 bits     5 bits         6 bits

op          rs         rt          rd        shamt      funct
opcode –

operation

first

register

source

operand

second

register

source

operand

register

destin-

ation

operand

shift

amount

function field -

selects variant

of operation



Machine Language

 Consider the load-word and store-word instructions,

 what would the regularity principle have us do?

 we would have only 5 or 6 bits to determine the offset from a base register -
too little… (arrays?)

 Design Principle 3: Good design demands a compromise

 Introduce a new type of instruction format

 I-type (“I” for Immediate) for data transfer instructions

 Example:  lw $t0, 1002($s2)

100011        10010         01000          0000001111101010

op rs rt 16 bit offset

6 bits        5 bits         5 bits                 16 bits



Stored Program Concept

 Instructions are bit sequences, just like data

 Programs are stored in memory 

 to be read or written just like data

 Fetch & Execute Cycle

 instructions are fetched and put into a special register

 bits in the register control the subsequent actions (= 
execution)

 fetch the next instruction and repeat

Processor Memory

memory for data, programs, 

compilers, editors, etc.



SPIM – the MIPS simulator

 qtSPIM (MIPS spelt backwards!) is a MIPS simulator 
that

 reads MIPS assembly language files and translates to 
machine language

 executes the machine language instructions

 shows contents of registers and memory

 works as a debugger (supports break-points and 
single-stepping)

 provides basic OS-like services, like simple I/O

 qtSPIM is freely available on-line

 An important part of our course is to actually 
write MIPS assembly code and run using SPIM – the 
only way to learn assembly (or any programming 
language) is to write lots and lots of code!!!

 Refer to SPIM material, including given slides



Memory Organization:

Big/Little Endian Byte Order
 Bytes in a word can be numbered in two ways:

 byte 0 at the leftmost (most significant) to byte 3 at the rightmost 
(least significant), called big-endian

 byte 3 at the leftmost (most significant) to byte 0 at the rightmost 
(least significant), called little-endian

0 1  2 3

3 2  1  0

Word 0

Word 1

Byte 0 Byte 1 Byte 2 Byte 3

Byte 4 Byte 5 Byte 6 Byte 7

Word 0

Word 1

Byte 3 Byte 2 Byte 1 Byte 0

Byte 7 Byte 6 Byte 5 Byte 4

Big-endian
Memory

Little-endian
Memory



Memory Organization:

Big/Little Endian Byte Order

 qtSPIM’s memory storage depends on that of the underlying 
machine

 Intel 80x86 processors are little-endian

 because SPIM always shows words from left to right a “mental 
adjustment” has to be made for little-endian memory as in Intel 
PCs in our labs: start at right of first word go left, start at right of 
next word go left, …!

 Word placement in memory (from .data area of code) or word 
access (lw, sw) is the same in big or little endian

 Byte placement and byte access (lb, lbu, sb) depend on big or 
little endian because of the different numbering of bytes within 
a word

 Character placement in memory (from .data area of code) 
depend on big or little endian because it is equivalent to byte 
placement after ASCII encoding



Control: Conditional Branch

 Decision making instructions

 alter the control flow,

 i.e., change the next instruction to be executed

 MIPS conditional branch instructions:

bne $t0, $t1, Label 
beq $t0, $t1, Label 

 Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label: ....

I-type instructions

000100   01000   01001      0000000000011001

beq $t0, $t1, Label

(= addr.100)

word-relative addressing:
25 words = 100 bytes;
also PC-relative (more…)



Addresses in Branch

 Instructions:

bne $t4,$t5,Label Next instruction is at Label if $t4 != $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5

 Format:

 16 bits is too small a reach in a 232 address space

 Solution: specify a register (as for lw and sw) and add it to offset

 use PC (= program counter), called PC-relative addressing, based on

 principle of locality: most branches are to instructions near current 
instruction  (e.g., loops and if statements) 

I op      rs     rt       16 bit offset



Addresses in Branch

 Further extend reach of branch by observing all MIPS 

instructions are a word (= 4 bytes), therefore word-relative

addressing:

 MIPS branch destination address = (PC + 4) + (4 * offset)

 so offset = (branch destination address – PC – 4)/4

 but qtSPIM does offset = (branch destination address – PC)/4

Because hardware typically increments PC early 
in execute cycle to point to next instruction



Control: Unconditional 

Branch (Jump)
 MIPS unconditional branch instructions:

j Label

 Example:
if (i!=j) beq $s4, $s5, Lab1

h=i+j; add $s3, $s4, $s5

else j Lab2

h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

 J-type (“J” for Jump) instruction format

 Example:  j Label # addr. Label = 100

6 bits                                         26 bits

op 26 bit number

000010 00000000000000000000011001

word-relative 
addressing:
25 words = 100 bytes



Addresses in Jump

 Word-relative addressing also for jump instructions

 MIPS jump j instruction replaces lower 28 bits of  the PC with A00
where A is the 26 bit address; it never changes upper 4 bits

 Example: if PC = 1011X (where X = 28 bits), it is replaced with 
1011A00

 there are 16(=24) partitions of the 232 size address space, each partition 
of size 256 MB (=228), such that, in each partition the upper 4 bits of the 
address is same. 

 if a program crosses an address partition,  then a j that reaches a 
different partition has to be replaced by jr with a full 32-bit address 
first loaded into the jump register

 therefore, OS should always try to load a program inside a single 
partition

op               26 bit addressJ



Constants

 Small constants are used quite frequently (50% of operands) 
e.g., A = A + 5;

B = B + 1;
C = C - 18;

 Solutions?  Will these work?

 create hard-wired registers (like $zero) for constants like 1

 put program constants in memory and load them as required

 MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

 How to make this work?



Immediate Operands

 Make operand part of instruction itself!

 Design Principle 4: Make the common case fast

 Example: addi $sp, $sp, 4 # $sp = $sp + 4

001000 11101 0000000000000100

op rs rt 16 bit number

6 bits        5 bits          5 bits                        16 bits

11101



How about larger constants?

 First we need to load a 32 bit constant into a register

 Must use two instructions for this: first new load upper immediate
instruction for upper 16 bits
lui $t0, 1010101010101010

 Then get lower 16 bits in place:
ori $t0, $t0, 1010101010101010

 Now the constant is in place, use register-register arithmetic

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010
ori

1010101010101010 0000000000000000

filled with zeros



So far

 Instruction Format Meaning

add $s1,$s2,$s3 R      $s1 = $s2 + $s3

sub $s1,$s2,$s3 R      $s1 = $s2 – $s3

lw $s1,100($s2) I      $s1 = Memory[$s2+100] 

sw $s1,100($s2) I      Memory[$s2+100] = $s1

bne $s4,$s5,Lab1 I      Next instr. is at Lab1 if $s4 != $s5

beq $s4,$s5,Lab2 I      Next instr. is at Lab2 if $s4 = $s5

j Lab3 J      Next instr. is at Lab3

 Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J



Control Flow

 We have:  beq, bne. What about branch-if-less-than?

 New instruction:
if  $s1 < $s2 then

$t0 = 1
slt $t0, $s1, $s2 else 

$t0 = 0

 Can use this instruction to build   blt $s1, $s2, Label

 how? We generate more than one instruction – pseudo-instruction

 can now build general control structures

 The assembler needs a register to manufacture instructions from 
pseudo-instructions

 There is a convention (not mandatory) for use of registers



Policy-of-Use 

Convention for Registers
Name Register number Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

Register 1, called $at, is reserved for the assembler; registers 26-27,
called $k0 and $k1 are reserved for the operating system.



Assembly Language vs. 

Machine Language

 Assembly provides convenient symbolic representation

 much easier than writing down numbers

 regular rules: e.g., destination first

 Machine language is the underlying reality

 e.g., destination is no longer first

 Assembly can provide pseudo-instructions

 e.g.,  move $t0, $t1 exists only in assembly 

 would be implemented using  add $t0, $t1, $zero

 When considering performance you should count actual 
number of machine instructions that will execute



Procedures

 Example C code:

// procedure adds 10 to input parameter

int main()

{ int i, j;

i = 5;

j = add10(i);

i = j;

return 0;}

int add10(int i)

{ return (i + 10);}



Procedures
 Translated MIPS assembly

 Note more efficient use of registers possible!

.text

.globl main

main:

addi $s0, $0, 5

add  $a0, $s0, $0

jal add10

add $s1, $v0, $0

add $s0, $s1, $0

li  $v0, 10 

syscall

add10:

addi $sp, $sp, -4

sw $s0, 0($sp)

addi $s0, $a0, 10

add $v0, $s0, $0

lw $s0, 0($sp)

addi $sp, $sp, 4

jr $ra

$sp

Content of $s0

High address

Low address

MEMORY

argument 

to callee result

to caller

jump and link
control returns here

save register

in stack, see

figure below

restore

values

system code

& call to 

exit

return



0 zero  constant 0

1 at reserved for assembler

2 v0 results from callee

3 v1 returned to caller

4     a0 arguments to callee

5 a1    from caller: caller saves

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

MIPS: Software Conventions 

for Registers

16 s0 callee saves

. . .         (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return Address (HW):

caller saves



Procedures (recursive)

 Example C code – recursive factorial subroutine:

int main()

{ int i;

i = 4;

j = fact(i);

return 0;}

int fact(int n)

{ if (n < 1) return (1);

else return ( n*fact(n-1) );}



Procedures (recursive)
 Translated MIPS assembly:

.text

.globl main

main:

addi $a0, $0, 4     

jal fact             

nop

move $a0, $v0      

li $v0, 1            

syscall

li  $v0, 10        

syscall

fact:

addi $sp, $sp, -8

sw $ra, 4($sp)

sw $a0, 0($sp)

slti $t0, $a0, 1

beq $t0, $0, L1

nop

addi $v0, $0, 1

addi $sp, $sp, 8

jr $ra

L1:

addi $a0, $a0, -1

jal fact

nop

lw $a0, 0($sp)

lw $ra, 4($sp)

addi $sp, $sp, 8

mul $v0, $a0, $v0

jr $ra

save return 

address and 

argument in 

stack

exit

print value

returned by

fact

branch to 

L1 if n>=1

return 1

if n < 1

if n>=1 call

fact recursively

with argument

n-1

restore return

address, argument,

and stack pointer

return 

n*fact(n-1)

return control

control

returns

from fact



Using a Frame Pointer

Saved argument 

registers (if any)

Local arrays and  

structures (if any)

Saved saved 

registers (if any)

Saved return address

b.

$sp

$sp

$sp

c.

$fp

$fp

$fp

a.

High address

Low address

Variables that are local to a procedure but do not fit into registers (e.g., local arrays, struc-
tures, etc.) are also stored in the stack. This area of the stack is the frame. The frame pointer 
$fp points to the top of the frame and the stack pointer to the bottom. The frame pointer does
not change during procedure execution, unlike the stack pointer, so it is a stable base 
register from which to compute offsets to local variables.
Use of the frame pointer is optional. If there are no local variables to store in the stack it is 
not efficient to use a frame pointer.



Using a Frame Pointer

 Example: procCallsProg1Modified.asm 

This program shows code where it may be better to use $fp 

 Because the stack size is changing, the offset of variables stored in 
the stack w.r.t. the stack pointer $sp changes as well. However, the 
offset w.r.t. $fp would remain constant.

 Why would this be better?

The compiler, when generating assembly, typically maintains a 
table of program variables and their locations. If these locations 
are offsets w.r.t $sp, then every entry must be updated every time 
the stack size changes!

 Exercise:

Modify procCallsProg1Modified.asm to use a frame pointer

 Observe that SPIM names register 30 as s8 rather than fp. Of 
course, you can use it as fp, but make sure to initialize it with the 
same value as sp, i.e., 7fffeffc.



MIPS Addressing Modes

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+



Overview of MIPS

 Simple instructions – all 32 bits wide

 Very structured – no unnecessary baggage

 Only three  instruction formats

 Rely on compiler to achieve performance

 what are  the compiler's goals?

 Help compiler where we can

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J



Summarize MIPS:
MIPS operands

Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform 

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic.  MIPS register $zero always equals 0.  Register $at is 

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2
30

 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw  $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw  $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb  $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb  $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper immediate lui $s1, 100
$s1 = 100 * 2

16 Loads constant in upper 16 bits

branch on equal beq  $s1, $s2, 25 if ($s1 == $s2) go to             

PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne  $s1, $s2, 25 if ($s1 != $s2) go to             

PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt  $s1, $s2, $s3 if ($s2 < $s3)  $s1 = 1;          

else $s1 = 0

Compare less than; for beq, bne

set less than 

immediate

slti  $s1, $s2, 100 if ($s2 < 100)  $s1 = 1;          

else $s1 = 0

Compare less than constant

jump j    2500 go to 10000 Jump to target address

Uncondi- jump register jr   $ra go to $ra For switch, procedure return

tional jump jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call



Alternative Architectures

 Design alternative:

 provide more powerful operations

 goal is to reduce number of instructions executed

 danger is a slower cycle time and/or a higher CPI

 Sometimes referred to as R(educed)ISC vs. C(omplex)ISC

 virtually all new instruction sets since 1982 have been RISC

 We’ll look at PowerPC and 80x86



PowerPC Special Instructions

 Indexed addressing

 Example:       lw $t1,$a0+$s3  #$t1=Memory[$a0+$s3]

 what do we have to do in MIPS?  add  $t0, $a0, $s3

lw   $t1, 0($t0)

 Update addressing

 update a register as part of load (for marching through arrays)

 Example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4

 what do we have to do in MIPS?   lw    $t0, 4($s3)

addi  $s3, $s3, 4

 Others:

 load multiple words/store multiple words

 a special counter register to improve loop performance:  

bc   Loop, ctrl != 0 # decrement counter, if not 0 goto loop

 MIPS:    addi   $t0, $t0, -1

bne    $t0, $zero, Loop



A dominant architecture:

80x86

 1978:  The Intel 8086 is announced (16 bit architecture)

 1980:  The 8087 floating point coprocessor is added

 1982:  The 80286 increases address space to 24 bits, 
+instructions

 1985:  The 80386 extends to 32 bits, new addressing modes

 1989-1995:  The 80486, Pentium, Pentium Pro add a few  
instructions (mostly designed for higher performance)

 1997:  MMX is added

“this history illustrates the impact of the “golden handcuffs” of 
compatibility”

“adding new features as someone might add clothing to a packed 
bag”



A dominant architecture:  

80x86

 Complexity

 instructions from 1 to 17 bytes long

 one operand must act as both a source and destination

 one operand may come from memory

 several complex addressing modes

 Saving grace:

 the most frequently used instructions are not too difficult to build

 compilers avoid the portions of the architecture that are slow

“an architecture that is difficult to explain and impossible to love” 

“ what the 80x86 lacks in style is made up in quantity, making it beautiful 
from the right perspective”



Summary

 Instruction complexity is only one variable

 lower instruction count vs. higher CPI / lower clock rate

 Design Principles:

 simplicity favors regularity

 smaller is faster

 good design demands compromise

 make the common case fast

 Instruction set architecture

 a very important abstraction indeed!


