& Naveniotipio lwavvivwv

EidIka ©¢uaTta ApXITEKTOVI
[poypapuaTiopou MIKpoETTEGEPYOC

Evotnta 4: The Processor: Datapath and Control

Aldaockwv: Baptdiwtng dwTtiog
Tunpa MAnpo@oplknNg Kat TNAETKOLVWVIWY

Implementing MIPS

» We're ready to look at an implementation of the MIPS i"'p

» Simplified to contain only \

» arithmetic-logic instructions: add, sub, and, or, slit
l'\l

» memory-reference instructions: 1w, sw

» control-flow instructions: beq,] \

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

| —— | — | — | — | — | — |

6 bits 5 bits 5 bits 16 bits

| — | — | «— | <« > |

rt offset

R-Format

I-Format

26 bits

v

address

Implementing MIPS: the
Fetch/Execute Cycle

» High-level abstract view of fetch/execute implementation
» use the program counter (PC) to read instruction address

» fetch the instruction from memory and increment PC
» use fields of the instruction to select registers to read
» execute depending on the instruction
» repeat...
Data
Register #
PC Address Instruction =4 Registers >AL »| Address
Instruction Register #)
memory » Data
Register # memory
»| Data

Overview: Processor
Implementation Styles

» Single Cycle

» perform each instruction in 1 clock cycle

» clock cycle must be long enough for slowest instruction; therefore,

» disadvantage: only as fast as slowest instruction
» Multi-Cycle

» break fetch/execute cycle into multiple steps

» perform 1 step in each clock cycle

» advantage: each instruction uses only as many cycles as it needs
» Pipelined

» execute each instruction in multiple steps

» perform 1 step / instruction in each clock cycle

» process multiple instructions in parallel - assembly line

Functional Elements

» Two types of functional elements in the hardware:
» elements that operate on data (called combinational element

» elements that contain data (called state or sequential elements

Combinational Elements

» Works as an input = output function, e.g., ALU

» Combinational logic reads input data from one

register and writes output data to another, or
same, register

» read/write happens in a single cycle -

combinational element cannot store data from one
cycle to a future one

= O D=

Combinational logic hardware units

State State . State
element Combinational logic element element
1 2

Clock cycle —

State Elements

» State elements contain data in internal storage, e.g.,
registers and memory \

» All state elements together define the state of the machi
\
» What does this mean? Think of shutting down and starting up agaxn..

» Flipflops and latches are 1-bit state elements, equivalenl ly,
they are 1-bit memories

» The output(s) of a flipflop or latch always depends on the blt
value stored, i.e., its state, and can be called 1/0 or -
high/low or true/ false

» The input to a flipflop or latch can change its state
depending on whether it is clocked or not...

Synchronous Logic:
Clocked Latches and Flipflops

» Clocks are used in synchronous logic to determine when a
element is to be updated

\s
» in level-triggered clocking methodology either the state change
when the clock is high or only when it is low (technology-depend

\

Falling edge \

- YT

Clock period Rising edge

» in edge-triggered clocking methodology either the rising edge or |
falling edge is active (depending on technology) - i.e., states cha
only on rising edges or only on falling edge

» Latches are level-triggered
» Flipflops are edge-triggered

State Elements on the
Datapath: Register File

» Registers are implemented with arrays of D-flipflops

5 bits e—

num

er

5 bits __,| Read register

5 bits R

32 bit gm—>

num

— 32 bits

— 32 Dbits

Register file with two read ports and

one write port

State Elements on the
Datapath: Register File

» Port implementation:

Clock

Read register

number 1

Register 0

Register 1

Registern— 1

Register n

Read register

number 2

-+ Read data 1

» Read data 2

Yy V v VY Yy V. v v %
(x cZ)4—(x c Z)Q—

Read ports are implemented
with a pair of multiplexors — 5
bit multiplexors for 32 registers

Write

0
1

n-to-1 :
decoder | -

Register number >

n-—1

n

Register data

Write port is implemented
a decoder — 5-t0-32 decc
32 registers. Clock is re
write as register state
only at clock edge

VHDL

» All components that we have discussed - and shall

discuss - can be fabricated using VHDL (or other
HDL)

» Refer to VLSI design slides and examples

Single-cycle Implementation
of MIPS

>

>

Our first implementation of MIPS will use a single long
clock cycle for every instruction \

Every instruction begins on one up (or, down) clock edgé
and ends on the next up (or, down) clock edge \

This approach is not practical as it is much slower than a
multicycle implementation where different instruction ‘
classes can take different numbers of cycles ‘\

» in a single-cycle implementation every instruction must take
the same amount of time as the slowest instruction

» in a multicycle implementation this problem is avoided by
allowing quicker instructions to use fewer cycles

Even though the single-cycle approach is not practical it is
simple and useful to understand first

Note . we shall implement jump at the very end

Datapath: Instruction
Store/Fetch & PC Increment

tructio
address —
PC
Instruction = >Add Sum
Instructiol
memory —
Read
—>(PC | address
a. Instruction memory b. Program counter c. Adder
Instruction {
Instruction
Three elements used to store memory
and fetch instructions and

increment the PC
Datapath

Animating the Datapath

PC

ADDR
Memory

RD

== Instruction

Instruction <-\I
PC<-PC+14

\

\

Datapath: R-Type Instruction

ALU control
9 | Read Read
register 1 Read register 1 Read
Register 5 |Read data 1 data 1
numbers 1 register 2 _ Regd) Zer
Registers Data Instruction register 2
D | Write ~ Registers >ALU ALU
register Read er_te result
Write data 2 register Read
Data data Write data 2
| RegWrite data
RegWrite
a. Registers b. ALU

Two elements used to implement
R-type instructions

Datapat

Animating the Datapath

Instruction

op

rs rt

rd

shamt

funct

RN1

WD

RegWrite

RN2 WN

RD1

Register File

RD2

?

Operation

Datapath:
Load/Store Instruction

16]
\ | Sign | \

MemWrite
Address Read
data
Write Data
data memory
MemRead

a. Data memory unit

N lextend| M

b. Sign-extension unit

3 ALU operation

Zero|—>
ALU ALU

result

Read
register 1 Read
Read data 1
Instruction register 2
1 Registers
Write 09
register Read
Write data 2
data
RegWrite
16 . 32
\ Sign
\ | extend

Two additional elements used
To implement load/stores

Datapath

Read
data

Animating the Datapath

lw rt, off

op rs rt offset/immediate

5 RIrt] <- MEM[R[rs] + s_exte
Operation "_‘
; ,

RN1 RN2 WN
] _ RD1 Zero
Register File |
wo 1A
MemWrite
ADDR
RegWrite
q Memory

MemRead

Animating the Datapath

sw rt, off

op rs rt offset/immediate

6 MEMIR[rs] + sign_extend(offs

Operation

RN1

RN2 WN

RD1
Register File

WD

MemWrite
ADDR

5 Memory

RegWrite

MemRead

Datapath: Branch Instruction

No shift hardware required:

simply connect wires from \

input to output, each shifted

PC + 4 from instruction datapath ==

left 2 bits
Instruction ‘

S

> Add Sum

/

To branch

>ALU Zero .
control logic

Read
register 1 Read
Read data 1
register 2
Registers
Write
register Read
Write data 2
data
RegWriteI

16 , 32

\ | Sign

N | extend

Datapath

Animating the Datapath

PC +4 from

op rs

rt |offset/immediate | jhstruction

RN1

RD1
Register File I } Zero

WD

6 datapath

Operation

— <2

RN2 WN

RD2
RegWrite

fo(R
16 X 32

beq rs, rt, offse

if (R[rs] == R][rt]) then
PC <- PC+4 + s_exte

MIPS Datapath I: Single-Cycle

Combining the datapaths for R-type instructions
and load/stores using two multiplexors

Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

ANy O LK

Read
register 1 Read | Mt
Read data e ROREY
| rstruction TEQ‘S(WR‘ i
— gl sters Rea
wris - e e
) daia 2 Acidr
Tegister data M
Write o
data prat *
winn memory

H:.-culr'zllr.-i

18

5

A

rata
Smor
nte
data
T
] Bberrpbiesnd

Data is either
from ALU (R-type)
or memory (load)

Animating the Datapath:
R-type Instruction

Instruction

16

Operation

WD

R
Register File

RegWrite

RN1 RN2 WN

D1

RD2

?

16

>

w
N

o

ALUSrc

\\
add rd,rs,

Zero

|

\

\
\
‘I

WD

MemWrite

ADDR

Data
Memory

MemRead

Animating the Datapath:
Load Instruction

Instruction

6

RN1 RN2 WN

RD1
Register File

WD

RD2

RegWrite

?

16

w
N

Operation

1

ALUSrc

3

lw rt,offse
\

Zero

|

\
\
\

\

\
\
\

\
\

MemWrite

ADDR

Data
Memory

»{ WD

MemRead

RD

*

Animating the Datapath:
Store Instruction

Instruction sw rt, off$.

Operation

RN1 RN2 WN

RD1
Register File

WD

Zero

|

MemWrite
ADDR

RD2

RegWrite

Data
Memory RP

WD

MemRead

*

MIPS Datapath lI: Single-Cycle

— Separate adder as ALU operations and PC

increment occur in the same clock cycle
S Add /

4
Read Registers 3 ALU operation
- Read register 1
> PCré»
address Read thea1d e
. register 2 ata ALUSrc
Instruction i
erte Read > Address Read
register data 2 M data
Instruction Write 5 Dt
memory data ’ : o
_| Write memory
RegWritel "l data
16 [sign |32 MemRead}
v\ extend
Separate instruction memory
as instruction and data read
occur in the same clock cycle

Adding instruction fetch

MIPS Datapath llI: Single-Cycl

T
SAdd
4

Read
address

Instruction

Instruction

memory

Instruction address is either
PC+4 or branch target address

Adding branch capability and another multiplexor

Important note: in a single-cycle implementation data cannot be stored

Registers adders Ope'rate
Read ’ 3] ALU operation MemV\}{ite
register 1 ALUSrc \
Read R
Read data 1 >
register 2
Write Read N Address Read
register data 2 g |\l§| data
Write X
i o Write emory
Regerte| datn
1\6> Sign 32
MY extend MemRead

> Ad dreéu

Extra adde\r ne

during an instruction — it only moves through combinational logic

Question: is the MemRead signal really needed?! Think of RegWrite

Datapath Executing add

—»@—»

Operation
3

PC .
Instruction
ADDR RD
Instruction ° _.__-_
Memory RN1 RN2 WN
RD1
Register File
WD
RD2
RegWrite
e
16 | X |32
gl
dd rd, rs, rt D

ALUSrc

Zero

1

wD

ADDR

MemWrite

Data ‘
Memory RD

MemRead

Datapath Executing 1w

PC

ADDR RD

Instruction
Memory

w rt,offset (rs)

Instruction

R
Register File

WD

RN1

RegWrite

RN2 WN

D1

RD2

—»@—»

Operation
3

ADDR

WD

MemMWrite

Data ‘
Memory RD

MemRead

PC

w rt,offset (rs)

Datapath Executing sw

ADDR

Instruction
Memory

RN1 RN2 WN

RD1
Register File

WD

—»@—»

Operation
3

RD2 '
RegWrite

?

1

ADDR

wD

Memory RD

MemWrite

Data g

MemRead

PC

Datapath Executing beqg

ADDR R Operation
Instruction
Memory RN1 RN2 WN
] . RD1
Register File
—1 WD
RD2
RegWrite
rl,r2,0ffset

MemWrite
ADDR

Data ‘
Memory RD

WD
MemRead

