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Implementing MIPS

» We're ready to look at an implementation of the MIPS i"'p

» Simplified to contain only \

» arithmetic-logic instructions: add, sub, and, or, slit
l'\l

» memory-reference instructions: 1w, sw

» control-flow instructions: beq, ] \
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Implementing MIPS: the
Fetch/Execute Cycle

» High-level abstract view of fetch/execute implementation
» use the program counter (PC) to read instruction address

» fetch the instruction from memory and increment PC
» use fields of the instruction to select registers to read
» execute depending on the instruction
» repeat...
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Overview: Processor
Implementation Styles

» Single Cycle

» perform each instruction in 1 clock cycle

» clock cycle must be long enough for slowest instruction; therefore,

» disadvantage: only as fast as slowest instruction
» Multi-Cycle

» break fetch/execute cycle into multiple steps

» perform 1 step in each clock cycle

» advantage: each instruction uses only as many cycles as it needs
» Pipelined

» execute each instruction in multiple steps

» perform 1 step / instruction in each clock cycle

» process multiple instructions in parallel - assembly line



Functional Elements

» Two types of functional elements in the hardware:
» elements that operate on data (called combinational element

» elements that contain data (called state or sequential elements



Combinational Elements

» Works as an input = output function, e.g., ALU

» Combinational logic reads input data from one

register and writes output data to another, or
same, register

» read/write happens in a single cycle -

combinational element cannot store data from one
cycle to a future one

= O D=

Combinational logic hardware units

State State . State
element Combinational logic element element
1 2

Clock cycle —




State Elements

» State elements contain data in internal storage, e.g.,
registers and memory \

» All state elements together define the state of the machi
\
» What does this mean? Think of shutting down and starting up agaxn..

» Flipflops and latches are 1-bit state elements, equivalenl ly,
they are 1-bit memories

» The output(s) of a flipflop or latch always depends on the blt
value stored, i.e., its state, and can be called 1/0 or -
high/low or true/ false

» The input to a flipflop or latch can change its state
depending on whether it is clocked or not...



Synchronous Logic:
Clocked Latches and Flipflops

» Clocks are used in synchronous logic to determine when a
element is to be updated

\s
» in level-triggered clocking methodology either the state change
when the clock is high or only when it is low (technology-depend

\

Falling edge \

- YT

Clock period Rising edge

» in edge-triggered clocking methodology either the rising edge or |
falling edge is active (depending on technology) - i.e., states cha
only on rising edges or only on falling edge

» Latches are level-triggered
» Flipflops are edge-triggered



State Elements on the
Datapath: Register File

» Registers are implemented with arrays of D-flipflops
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State Elements on the
Datapath: Register File

» Port implementation:

Clock
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Read ports are implemented
with a pair of multiplexors — 5
bit multiplexors for 32 registers

Write

0
1

n-to-1 :
decoder | -

Register number >

n-—1

n

Register data
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a decoder — 5-t0-32 decc
32 registers. Clock is re
write as register state
only at clock edge



VHDL

» All components that we have discussed - and shall

discuss - can be fabricated using VHDL (or other
HDL)

» Refer to VLSI design slides and examples



Single-cycle Implementation
of MIPS

>

>

Our first implementation of MIPS will use a single long
clock cycle for every instruction \

Every instruction begins on one up (or, down) clock edgé
and ends on the next up (or, down) clock edge \

This approach is not practical as it is much slower than a
multicycle implementation where different instruction ‘
classes can take different numbers of cycles ‘\

» in a single-cycle implementation every instruction must take
the same amount of time as the slowest instruction

» in a multicycle implementation this problem is avoided by
allowing quicker instructions to use fewer cycles

Even though the single-cycle approach is not practical it is
simple and useful to understand first

Note . we shall implement jump at the very end



Datapath: Instruction
Store/Fetch & PC Increment
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Datapath



Animating the Datapath
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Datapath: R-Type Instruction

ALU control
9 | Read Read
register 1 Read register 1 Read
Register 5 |Read data 1 data 1
numbers 1 register 2 _ Regd ) Zer
Registers Data Instruction register 2
D | Write ~ Registers >ALU ALU
register Read er_te result
Write data 2 register Read
Data data Write data 2
| RegWrite data
RegWrite
a. Registers b. ALU

Two elements used to implement
R-type instructions
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Animating the Datapath
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Datapath:
Load/Store Instruction
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Animating the Datapath

lw rt, off
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Animating the Datapath

sw rt, off

op rs rt offset/immediate

6 MEMIR[rs] + sign_extend(offs
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Datapath: Branch Instruction

No shift hardware required:

simply connect wires from \

input to output, each shifted

PC + 4 from instruction datapath ==

left 2 bits
Instruction ‘

S
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To branch
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control logic
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Write
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Write data 2
data
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Animating the Datapath

PC +4 from
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if (R[rs] == R][rt]) then
PC <- PC+4 + s_exte




MIPS Datapath I: Single-Cycle

Combining the datapaths for R-type instructions
and load/stores using two multiplexors

Input is either register (R-type) or sign-extended
lower half of instruction (load/store)
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Animating the Datapath:
R-type Instruction
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Animating the Datapath:
Load Instruction
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Animating the Datapath:
Store Instruction

Instruction sw rt, off$ .

Operation
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MIPS Datapath lI: Single-Cycle

— Separate adder as ALU operations and PC

increment occur in the same clock cycle
S Add /

4
Read Registers 3 ALU operation
- Read register 1
> PCré»
address Read thea1d e
. register 2 ata ALUSrc
Instruction i
erte Read > Address Read
register data 2 M data
Instruction Write 5 Dt
memory data ’ : o
_| Write memory
RegWritel "l data
16 [ sign |32 MemRead}
v\ extend
Separate instruction memory
as instruction and data read
occur in the same clock cycle

Adding instruction fetch



MIPS Datapath llI: Single-Cycl

T
SAdd
4

Read
address

Instruction

Instruction

memory

Instruction address is either
PC+4 or branch target address

Adding branch capability and another multiplexor

Important note: in a single-cycle implementation data cannot be stored
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Extra adde\r ne

during an instruction — it only moves through combinational logic

Question: is the MemRead signal really needed?! Think of RegWrite




Datapath Executing add
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Datapath Executing 1w
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Datapath Executing beqg
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