
Ειδικά Θέματα Αρχιτεκτονικής

και Προγραμματισμού

Μικροεπεξεργαστών
Εργαστήριο

Διδάσκων: Βαρτζιώτης Φώτιος

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Slides based on Dr. Sumanta Guha's work

Introduction

 What is QtSpim?

 a simulator that runs assembly programs for MIPS R2000/R3000
RISC computers

 Resources

 http://spimsimulator.sourceforge.net/

 Computer Organization & Design: The Hardware/Software
Interface”, by Patterson and Hennessy: Chapter 3 and Appendix
A.9-10

 What does QtSpim do?

 reads MIPS assembly language files and translates to machine
language

 executes the machine language instructions

 shows contents of registers and memory

 works as a debugger (supports break-points and single-stepping)

 provides basic OS-like services, like simple I/O

Slides based on Dr. Sumanta Guha's work

http://spimsimulator.sourceforge.net/

Learning MIPS & QtSpim

 MIPS assembly is a low-level programming language

 The best way to learn any programming language is from
live code

 We will get you started by going through a few example
programs and explaining the key concepts

 We will not try to teach you the syntax line-by-line: pick
up what you need from the book and on-line tutorials

 Tip: Start by copying existing programs and modifying
them incrementally making sure you understand the
behavior at each step

 Tip: The best way to understand and remember a
construct or keyword is to experiment with it in code, not
by reading about it

Slides based on Dr. Sumanta Guha's work

QtSpim Installation

 Windows Installation

 download the .msi file from

https://sourceforge.net/projects/spimsimulator/fil

es/ and save it on your machine. For your

convenience a copy is kept locally at the class

website

 Double click to install..

Slides based on Dr. Sumanta Guha's work

https://sourceforge.net/projects/spimsimulator/files/

QtSpim Windows Interface

 Registers window

 shows the values of all

registers in the MIPS CPU

and FPU

 Data segment window

 shows the data loaded into

the program’s memory and

the data of the program’s

stack

 Text segment window

 shows assembly instructions

& corresponding machine

code

 Messages window

 shows :QtSpim messages

Slides based on Dr. Sumanta Guha's work

Using :QtSpim

 Loading source file

 Use File -> Open menu

 Simulation

 Simulator -> Go : run loaded program

 Click the OK button in the Run Parameters pop-up window if the starting
address value is “0x00400000”

 Simulator -> Break : stop execution

 Simulator -> Clear Registers and Reinitialize : clean-up before new
run

Slides based on Dr. Sumanta Guha's work

Using QtSpim

 Simulator -> Reload : load file again after editing

 Simulator -> Single Step or Multiple Step : stepping to debug

 Simulator -> Breakpoints : set breakpoints

 Notes:

 text segment window of QtSpim shows assembly and corresponding

machine code

 pseudo-instructions each expand to more than one machine instruction

 if Delayed Branches is checked in Simulator -> Settings (tab MIPS)…
then statementx will execute before control jumps to L1 in

following code – to avoid insert nop before statementx:

nopjal L1

statementx

…

L1: …

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:

add2numbersProg1.asm

Program adds 10 and 11

.text # text section

.globl main # call main by SPIM

main:

ori $8,$0,0xA # load “10" into register 8

ori $9,$0,0xB # load “11" into register 9

add $10,$8,$9 # add registers 8 and 9, put result

in register 10

Slides based on Dr. Sumanta Guha's work

MIPS Assembly Code Layout

 Typical Program Layout

.text #code section

.globl main #starting point: must be global

main:

user program code

.data #data section

user program data

Slides based on Dr. Sumanta Guha's work

MIPS Assembler Directives

 Top-level Directives:

 .text

 indicates that following items are stored in the user text
segment, typically instructions

 .data

 indicates that following data items are stored in the data
segment

 .globl sym

 declare that symbol sym is global and can be referenced
from other files

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:

add2numbersProg2.asm

Program adds 10 and 20

.text # text section

.globl main # call main by SPIM

main:

la $t0, value # load address ‘value’ into $t0

lw $t1, 0($t0) # load word 0(value) into $t1

lw $t2, 4($t0) # load word 4(value) into $t2

add $t3, $t1, $t2 # add two numbers into $t3

sw $t3, 8($t0) # store word $t3 into 8($t0)

.data # data section

value: .word 10, 20, 0 # load data integers. Default data

start address 0x10010000(= value)

Parse the
machine code
for these two
instructions!

Slides based on Dr. Sumanta Guha's work

MIPS Memory Usage as

viewed in QtSpim

reserved

0x00000000

0x00400000

0x10010000

0x7fffeffc
0x7fffffff

text segment
(instructions)

data segment

stack segment

reserved

Slides based on Dr. Sumanta Guha's work

MIPS Assembler Directives

 Common Data Definitions:

 .word w1, …, wn

 store n 32-bit quantities in successive memory words

 .half h1, …, hn

 store n 16-bit quantities in successive memory halfwords

 .byte b1, …, bn

 store n 8-bit quantities in successive memory bytes

 .ascii str

 store the string in memory but do not null-terminate it

 strings are represented in double-quotes “str”

 special characters, eg. \n, \t, follow C convention

 .asciiz str

 store the string in memory and null-terminate it

Slides based on Dr. Sumanta Guha's work

MIPS Assembler Directives

 Common Data Definitions:

 .float f1, …, fn

 store n floating point single precision numbers in
successive memory locations

 .double d1, …, dn

 store n floating point double precision numbers in
successive memory locations

 .space n

 reserves n successive bytes of space

 .align n

 align the next datum on a 2n byte boundary. For
example, .align 2 aligns next value on a word
boundary. .align 0 turns off automatic alignment
of .half, .word, etc. till next .data directive

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:

storeWords.asm
Program shows memory storage and access (big vs. little endian)

.data

here: .word 0xabc89725, 100

.byte 0, 1, 2, 3

.asciiz "Sample text"

there: .space 6

.byte 85

.align 2

.byte 32

.text

.globl main

main:

la $t0, here

lbu $t1, 0($t0)

lbu $t2, 1($t0)

lw $t3, 0($t0)

sw $t3, 36($t0)

sb $t3, 41($t0)

Word placement in memory is exactly same in
big or little endian – a copy is placed.

Byte placement in memory depends on if it is
big or little endian. In big-endian bytes in a
Word are counted from the byte 0 at the left
(most significant) to byte 3 at the right
(least significant); in little-endian it is the
other way around.

Word access (lw, sw) is exactly same in big or
little endian – it is a copy from register to
a memory word or vice versa.

Byte access depends on if it is big or little endian,
because bytes are counted 0 to 3 from left to right
in big-endian and counted 0 to 3 from right to
left in little-endian.

SPIM’s memory storage depends on the underlying
machine: Intel 80x86 processors are little-endian!

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:

swap2memoryWords.asm

Program to swap two memory words

.data # load data

.word 7

.word 3

.text

.globl main

main:

lui $s0, 0x1001 # load data area start address 0x10010000

lw $s1, 0($s0)

lw $s2, 4($s0)

sw $s2, 0($s0)

sw $s1, 4($s0)

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:

branchJump.asm
Nonsense program to show address calculations for

branch and jump instructions

.text # text section

.globl main # call main by SPIM

Nonsense code

Load in SPIM to see the address calculations

main:

j label

add $0, $0, $0

beq $8, $9, label

add $0, $0, $0

add $0, $0, $0

add $0, $0, $0

add $0, $0, $0

label:

add $0, $0, $0

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:

procCallsProg2.asm

.text

.globl main

main:

la $a0, array

addi $a1, $0, 0

addi $sp, $sp, -4

sw $ra, 0($sp)

jal swap

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

equivalent C code:

swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

swap contents of elements $a1

and $a1 + 1 of the array that

starts at $a0

swap: add $t1, $a1, $a1

add $t1, $t1, $t1

add $t1, $a0, $t1

lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

jr $ra

.data

array: .word 5, 4, 3, 2, 1

Procedure call to swap two array words

save return
address $ra
in stack

jump and
link to swap

restore
return
address

jump to $ra

load para-
meters for
swap

Slides based on Dr. Sumanta Guha's work

MIPS: Software Conventions

for Registers

0 zero constant 0

1 at reserved for assembler

2 v0 results from callee

3 v1 returned to caller

4 a0 arguments to callee

5 a1 from caller: caller saves

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return Address (HW):

caller saves

Slides based on Dr. Sumanta Guha's work

QtSpim System Calls

 System Calls (syscall)

 OS-like services

 Method

 load system call code into register $v0 (see following table for codes)

 load arguments into registers $a0, …, $a3

 call system with QtSpim instruction syscall

 after call return value is in register $v0, or $f0 for floating point

results

Slides based on Dr. Sumanta Guha's work

SPIM System Call Codes

Service Code (put in $v0) Arguments Result

print_int 1 $a0=integer

print_float 2 $f12=float

print_double 3 $f12=double

print_string 4 $a0=addr. of string

read_int 5 int in $v0

read_float 6 float in $f0

read_double 7 double in $f0

read_string 8 $a0=buffer,
$a1=length

sbrk 9 $a0=amount addr in $v0

exit 10Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:

systemCalls.asm

Enter two integers in

console window

Sum is displayed

.text

.globl main

main:

la $t0, value

li $v0, 5

syscall

sw $v0, 0($t0)

li $v0, 5

syscall

sw $v0, 4($t0)

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 8($t0)

li $v0, 4

la $a0, msg1

syscall

li $v0, 1

move $a0, $t3

syscall

li $v0, 10

syscall

.data

value: .word 0, 0, 0

msg1: .asciiz “Sum = "

system call code
for read_int

result returned by call

argument to print_string call

system call code
for print_string

system call code
for print_int

argument to print_int call

system call code
for exit

Slides based on Dr. Sumanta Guha's work

Conclusion & More

 The code presented so far should get you started in
writing your own MIPS assembly

 Remember the only way to master the MIPS
assembly language – in fact, any computer language –
is to write lots and lots of code

 For anyone aspiring to understand modern computer
architecture it is extremely important to master
MIPS assembly as all modern computers (since the
mid-80’s) have been inspired by, if not based fully or
partly on the MIPS instruction set architecture

 To help those with high-level programming language
(e.g., C) experience, in the remaining slides we show
how to synthesize various high-level constructs in
assembly…

Slides based on Dr. Sumanta Guha's work

Synthesizing Control

Statements (if, if-else)
if (condition) {

statements

}

beqz $t0, if_end_label

MIPS code for the

if-statements.

if_end_label:

if (condition) {

if-statements

} else {

else-statements

}

beqz $t0, if_else_label

MIPS code for the

if-statements.

j if_end_label

if_else_label:

MIPS code for the

else-statements

if_end_label:

Slides based on Dr. Sumanta Guha's work

Synthesizing Control

Statements (while)

while (condition) {

statements

}

while_start_label:

MIPS code for the condition expression

beqz $t0, while_end_label

MIPS code for the while-statements.

j while_start_label

while_end_label:

Slides based on Dr. Sumanta Guha's work

Synthesizing Control

Statements (do-while)

do {

statements

} while (condition);

do_start_label:

MIPS code for the do-statements.

do_cond_label:

MIPS code for the condition expr:

beqz $t0, do_end_label

j do_start_label

do_end_label:

Slides based on Dr. Sumanta Guha's work

Synthesizing Control

Statements (for)

for (init ; condition ; incr) {

statements

}

MIPS code for the init expression.

for_start_label:

MIPS code for the condition expression

beqz $t0, for_end_label

MIPS code for the for-statements.

for_incr_label:

MIPS code for the incr expression.

j for_start_label

for_end_label:

Slides based on Dr. Sumanta Guha's work

Synthesizing Control

Statements (switch)

switch (expr) {

case const1:

statement1

case const2:

statement2

...

case constN:

statementN

default:

default-statement

}

MIPS code to compute expr.

Assume that this leaves the

value in $t0

beq $t0, const1, switch_label_1

beq $t0, const2, switch_label_2

...

beq $t0, constN, switch_label_N

If there is a default, then add

b switch_default

Otherwise, add following lineinstead:

b switch_end_label

Slides based on Dr. Sumanta Guha's work

Synthesizing Control

Statements (switch), cont.
switch_label_1:

MIPS code to compute statement1.

switch_label_2:

MIPS code to compute statement2.

...

switch_label_N:

MIPS code to compute statementN.

If there's a default:

switch_default:

MIPS code to compute default-statement.

switch_end_label:
Slides based on Dr. Sumanta Guha's work

Array Address Calculation

Address calculation in assembler:

address of A [n] = address of A [0] + (n* sizeof (element of A))

$t0 = address of start of A.

$t1 = n.

mul $t2, $t1, 4 # compute offset from

the start of the array

assuming sizeof(element)=4

add $t2, $t0, $t2 # add the offset to the

address of A [0].

now $t2 = &A [n].

sw $t3, ($t2) # A [n] = whatever is in $t3.

lw $t3, ($t2) # $t3 = A [n].

Slides based on Dr. Sumanta Guha's work

Short-Cut Expression

Evaluation (and)

cond1 && cond2

MIPS code to compute cond1.

Assume that this leaves the value in $t0.

If $t0 is zero, we're finished

(and the result is FALSE).

beqz $t0, and_end

MIPS code to compute cond2.

Assume that this leaves the value in $t0.

and_end:

Slides based on Dr. Sumanta Guha's work

Short-Cut Expression

Evaluation (or)

cond1 || cond2

MIPS code to compute cond1.

Assume that this leaves the value in $t0.

If $t0 is not zero, we're finished

(and the result is TRUE).

bnez $t0, or_end

MIPS code to compute cond2.

Assume that this leaves the value in $t0.

or_end:

Slides based on Dr. Sumanta Guha's work

