~ Mavemotnpio lwavvivwy

Eldika Ospata ApXITEKTOVIKNG
Kat Mpoypappaticpou

MiKpoeTTEEEpYAOTWY
Epyaotnplo

Aldaockwv: Baptliwtng dwtlog
Tunua MANPoWopIKAG Kat TNAETIKOVWVIWY

Slides based on Dr. Sumanta Guha's work

Introduction

» What is QtSpim?

» a simulator that runs assembly programs for MIPS R2000/R3000
RISC computers

» Resources

» http://spimsimulator.sourceforge.net/

» Computer Organization & Design: The Hardware/Software
wtgequce”, by Patterson and Hennessy: Chapter 3 and Appendix

» What does QtSpim do?

» reads MIPS assembly language files and translates to machine
language

executes the machine language instructions
shows contents of registers and memory
works as a debugger (supports break-points and single-stepping)

provides basic OS-like services, like simple I/0

vV v vy

Slides based on Dr. Sumanta Guha's work

http://spimsimulator.sourceforge.net/

Learning MIPS & QtSpim

» MIPS assembly is a low-level programming language

» The best way to learn any programming language is f
live code

» We will get you started by going through a few example
programs and explaining the key concepts

» We will not try to teach you the syntax line-by-line: pic
up what you need from the book and on-line tutorials

» Tip: Start by copying existing programs and modifying
them incrementally making sure you understand the
behavior at each step

» Tip: The best way to understand and remember a
construct or keyword is to experiment with it in code, ng
by reading about it

Slides based on Dr. Sumanta Guha's work

QtSpim Installation

» Windows Installation

» download the .msi file from
https://sourceforge.net/projects/spimsimulator/fil
es/ and save it on your machine. For your
convenience a copy is kept locally at the class
website

» Double click to install..

Slides based on Dr. Sumanta Guha's work

https://sourceforge.net/projects/spimsimulator/files/

QtSpim Windows Interface

L Qtspim
File Simulator Registers Text Segment Data Segment Window Help
| B|l@aa|z #|» v a e
| FPRegs |mtnegs[1ﬁ]] Data | Text
Int Regs [16]
PC =0 User Text Segment [00400000]..[00440000]
. . EPC =0 1w $4, 0($29) ; 183: 1w $a0 0(Ssp) # argce
> Reg]sters W]ndOW Cause =0 27a50004 addiu 85, $29, 4 ; 184: addiu $al $sp 4 # argv
BadvAaddr = 0 24260004 addiu $6, $5, 4 ; 185: addiu $a2 $al 4 # envp
Status =3 00041080 s11 S2, 84, 2 ; 186: =511 $v0 $a0 2
> ShOWS the values Of all 00c23021 addu $6, $6, §2 ; 187: addu $a2 5aZ2 5v0
. . HI 0c000000 jal 0x00000000 [main] ; 188: jal main
reg1sters in the MIPS CPU Lo 00000000 nop ; 189: nop
[0040001c] 3402000a ori $2, $0, 10 ; 181: 1i $v0 10
and FPU [00400020]1 0000000c syscall ; 182: syscall # syscall 10 (exit)

» Data segment window

& Console - a x
» shows the data loaded into | oa | o
the program’s memory and % 1] &o(s\
the data of the program’s el A R
— 5 5
stack - _ @QQ
=0
. ~ 0 60«‘
» Text segment window = &
. . =0 \&
» shows assembly instructions |22 =31 = 0 °¢9°
& corresponding machine R21 [s5] = 0 =l ,@c'
code 3 <
Memory and registers cleared 60
Messages window e e
| ~ it Rames pesera. T T
» shows :QtSpim messages See the fils BEADE for e full copyright notics. L _ _
T is linked to the Qt library, which is distributed under the GNU Lesser General Public License version 3 and version 2.1.

Slides based on Dr. Sumanta Guha's work

Using :QtSpim

» Loading source file
» Use File -> Open menu
Simulation

» Simulator -> Go : run loaded program

Important!! ¥

» Click the OK button in the Run Parameters pop-up window if
address value is “0x00400000”

» Simulator -> Break : stop execution

» Simulator -> Clear Registers and Reinitialize : clean-up befo
run

Slides based on Dr. Sumanta Guha's work

Using QtSpim

» Simulator -> Reload : load file again after editing
» Simulator -> Single Step or Multiple Step : stepping to debug

» Simulator -> Breakpoints : set breakpoints

» Notes:

» text segment window of QtSpim shows assembly and correspond
machine code

» pseudo-instructions each expand to more than one machine instruc

» if Delayed Branches is checked in Simulator -> Settings (tab MIPS)
then statementx will execute before control jumps to 1.1 in
following code - to avoid insert nop before statementx:

Jal L1

<
Slides based on Dr.%l:Crng'thCal%{EaesrvlvzncrkX

Ll: ..

QtSpim Example Program:
add2numbersProg1.asm

Program adds 10 and 11

.text # text section
.globl main # call main by SPIM
main:
ori 58,50, 0xA # load “10" into register 8
ori $9,50,0xB # load “11" into register 9
add $10,$8,5$9 # add registers 8 and 9, put r
in register 10

Slides based on Dr. Sumanta Guha's work

MIPS Assembly Code Layout

» Typical Program Layout

.text #code section

.globl main #starting point: must be globa
main:

user program code

.data #data section

user program data

Slides based on Dr. Sumanta Guha's work

MIPS Assembler Directives

» Top-level Directives:

> .text

» indicates that following items are stored in the user text
segment, typically instructions

» .data

» indicates that following data items are stored in the data
segment

» .globl sym

» declare that symbol sym is global and can be referenced
from other files

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:
add2numbersProg2.asm

Program adds 10 and 20

.text # text section
.globl main # call main by SPIM

main:

la $t0, wvalue # load address ‘value’ into $f
1w $Stl, 0($tO0) # load word O (value) into S$tl
1w $St2, 4($t0) Parse the # load word 4 (value) into $t2
add $t3, S$t1, StZ}gﬁﬁgiﬁﬁz # add two numbers into $t3
sw $t3, 8($t0) e # store word $t3 into 8 ($tO
.data # data section

Va k& pased o2 Bdbanth Qunas edk, O # load data integers. Default

start address 0x10010000

MIPS Memory Usage as

viewed in QtSpim
O ™ recerved

Ox7/fffeffcl— "=>=1 Y&V
stack segment

!
1

data segment

0x10010000

text segment
(instructions)

0x00400000 ————— T

e s ono OX00000000L0202o

MIPS Assembler Directives

» Common Data Definitions:

» .word w1, ..., wn

» store n 32-bit quantities in successive memory words
» .half hi1, .., hn

» store n 16-bit quantities in successive memory halfwords
» .byte b1, .., bn

» store n 8-bit quantities in successive memory bytes
» .ascii str

» store the string in memory but do not null-terminate it

» strings are represented in double-quotes “str”
» special characters, eg. \n, \t, follow C convention

» .asciiz str
» store the string in memory and null-terminate it

Slides based on Dr. Sumanta Guha's work

MIPS Assembler Directives

» Common Data Definitions:

» .float f1, ..., fn

» store n floating point single precision numbers in
successive memory locations

» .double d1, ..., dn

» store n floating point double precision numbers in
successive memory locations

» .space n
> reserves n successive bytes of space
» .align n

» align the next datum on a 2" byte boundary. For
example, .align 2 aligns next value on a word
boundary. .allgn 0 turns off automatic alignment
of .half, .word, etc. till next .data directive

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:
storeWords.asm

Program shows memory storage and access (big vs. little endian)

here:

there:

main:

Slides based on Dr.

la $t0, here

lbu $t1, 0($t0)
lbu $t2, 1($t0)
lw $t3, 0(st0)
sw $t3, 36(5$t0)

Sumanta Guha's work
sb $t3, 41($t0)

et SPIM’s memory storage depends on the under

-word Oxabc83725, 100 machine: Intel 80x86 processors are little-enc

.byte 0, 1, 2, 3
.asciiz "Sample text"
.space 6

.byte 85

.align 2

.byte 32

.text

.globl main

QtSpim Example Program:
swapZ2ZmemoryWords.asm

Program to swap two memory words

.data

.word 7

.word 3

.text

load data

.globl main

main:

lui $s0,
$sl,
$s2,
$s2,
$sl,

1w
1w
SW

SW

0x1001 # load data area start address 0x10010000

Slides based on Dr. Sumanta Guha's work

QtSpim Example Program:
branchJump.asm

Nonsense program to show address calculations for

branch and jump instructions

.text # text section

.globl main # call main by SPIM

Nonsense code
Load in SPIM to see the address calculations
main:
j label
add $0, $0, $O
beqg $8, $9, label
add $0, $0, $O
add $0, $0, $O
add $0, $0, $O
add $0, $0, $O
label:

Slides based on Dr. Sumanta Guha's work
add $0, $0, $0

QtSpim Example Program:
procCallsProg2.asm

Procedure call to swap two array words

equivalent C code
swap (int v[], int
.text # {
.globl main # int temp;
main: # temp = v[k];
load para i v[k]l= vik+1l];
0a - v [k+ = temp;
meters for { la 5a0, array ¥ o ’
Swap addi sal, %0, 0 # swap contents of eleme
and $al + 1 of the arra
Z(aj\éererse;cirg{ addi $sp, $sp, -4 # starts at $a0
in stack SW Sra, 0($sp) swap: add $tl, $al, sal
add stl1, stl, sStl

jump and {: jal swap add S$t1, $a0, $til
. 1w $t0, 0(sStl)
1w $t2, 4(stl)
1w $ra, 0($sp) sw $t2, 0($tl)
addi Ssp, S$sp, 4 sw $t0, 4(Stl)

jr Sra

P tOsﬂi@ ba{ed 03 Br. Sumanta Guﬁagﬁork
.data

array: .word 5,

MIPS: Software Conventions
for Registers

zero constant 0 16 0] callee saves

‘

(caller can clobber)

—

at reserved for assembler

N

vO results from callee s7

A | returned to caller

24 t8 temporary (cont’d)

“

a0 arguments to callee 25 t9

Ul

a1l from caller: caller saves 26 kO reserved for OS kernel

6 a2
7 a3 pointer to global area
8 t0 temporary: caller saves stack pointer

(callee can clobber) 30 fp frame pointer

15 t7 31

return Address (HW):

caller saves

QtSpim System Calls

» System Calls (syscall)

» OS-like services

» Method

» load system call code into register SvO (see following table f

» load arguments into registers Sao0, ..., Sa3

» call system with QtSpim instruction syscall

» after call return value is in register Sv0, or $f0 for floating poi
results

Slides based on Dr. Sumanta Guha's work

S

SPIM System Call Codes

Service Code (put in $v0) Arguments Result
print_int 1 $a0=integer
print_float 2 $f12=float
print_double 3 $f12=double
print_string 4 $a0=addr. of string
read_int 5 int in $vO0
read_float 6 float in $f0
read_double 7 double in $f0
read_string 8 $a0=buffer,

$al=length
sbrk 9 $a0=amount addr in $v0
ine@)¢§d on Dr. Sumanta GuHa's work 10

QtSpim Example Program:
systemCalls.asm

Enter two integers in
console window

Sum is displayed
.text

.globl main

main:
la $t0, wvalue

system call code

1i $v0, 5 for read_int

syscall
sw $v0, 0($t0)
result returned by call
1i $vO0, 5
spisseadd 3o Or. Sumanta Guha's work
sw $v0, 4(5t0)

1w Stl, 0($tO0)
1w St2, 4(s$t0)
add $t3, $tl, $t2
sw $t3, 8($t0)

system ca
1i $v0, 4 for print_s
la $a0, msqgl
syscall
argument to pri
1i $vO, 1

move $a0,‘£E§\\\\‘

syscall‘\\\\\\\ for print
argument to prin ‘f
1i $vO0, 10
syscall — Systemca
for exit
.data

value: .word 0O, 0O, O

msgl: .asciiz “Sum

Conclusion & More

» The code presented so far should get you started in
writing your own MIPS assembly

» Remember the only way to master the MIPS
assembly language - in fact, any computer language -
is to write lots and lots of code

» For anyone aspiring to understand modern computer
architecture it is extremely important to master
MIPS assembly as all modern computers (since the
mid-80’s) have been inspired by, if not based fully or
partly on the MIPS instruction set architecture

» To help those with high-level programming language
(e.g., C) experience, in the remaining slides we show
how to synthesize various high-level constructs in
assembly...

Slides based on Dr. Sumanta Guha's work

Synthesizing Control
Statements (if, if-else)

if (condition) {
statements

begz $t0, if end label
MIPS code for the

1if-statements.

i1f end label:

Slides based on Dr. Sumanta Guha's work

if (condition) {
if-statements

}else {
else-statements

beqgz $t0, if else

MIPS code for the

if-statements.

J 1f end label
if else label:

MIPS code for the

else-statements

if end label:

Synthesizing Control
Statements (while)

while (condition) {

statements

while start label:
MIPS code for the condition expression
beqgz $t0, while end label
MIPS code for the while-statements.
J while start label

while end label:

Slides based on Dr. Sumanta Guha's work

Synthesizing Control
Statements (do-while)

do {
statements
} while (condition);

do start label:
MIPS code for the do-statements.
do cond label:
MIPS code for the condition expr:
beqz $t0, do _end label
J do start label
do end label:

Slides based on Dr. Sumanta Guha's work

Synthesizing Control
Statements (for)

for (init ; condition ; incr) {
statements

MIPS code for the init expression.
for start label:
MIPS code for the condition expression
beqgz $t0, for end label
MIPS code for the for-statements.
for incr label:
MIPS code for the incr expression.
J for start label
for end label:

Slides based on Dr. Sumanta Guha's work

Synthesizing Control
Statements (switch)

: # MIPS code to compute expr.
switch (expr) { P P

) # Assume that this leaves the
case const1:

value 1in StO

statement1
' beqg $t0, constl, switch label
case const2: . B
14 2[l h l l 2
statement?2 peq vt0, const2, switch_label

beqg $t0, constN, switch label N
If there is a default, then add

case constN:

statementN
default: b switch default
default-statement# Otherwise, add following lineinste
b switch end label

Slides based on Dr. Sumanta Guha's work

Synthesizing Control

Statements (switch), cont.

switch label 1:
MIPS code to compute
switch label 2:

MIPS code to compute

switch label N:

MIPS code to compute

If there's a default:

switch default:
MIPS code to compute
switch end label:

Slides based on Dr. Sumanta Guha's work —

statementl.

statement?2.

statementN.

Array Address Calculation

Address calculation in assembler:
address of A [n] = address of A [0] + (n* sizeof (element of A))

St0 = address of start of A.
Stl = n.
mul $t2, $tl, 4 # compute offset from
the start of the array
assuming sizeof (element)=4
add $t2, S$t0, St2 # add the offset to the
address of A [0].
now $t2 = &A [n].

sw $t3, ($t2) # A [n] = whatever is in S$t3.
1w S$t3, (S$t2) # $t3 = A [n].

Slides based on Dr. Sumanta Guha's work

Short-Cut Expression
Evaluation (and)

cond1 && cond2

MIPS code to compute condl.

Assume that this leaves the value in $tO0.
If St0 is zero, we're finished

(and the result is FALSE).

begz $t0, and end

MIPS code to compute cond2.

Assume that this leaves the value in $tO.

and end:

Slides based on Dr. Sumanta Guha's work

Short-Cut Expression
Evaluation (or)

cond1 || cond2

MIPS code to compute condl.

Assume that this leaves the value in $tO.
If St0 is not zero, we're finished

(and the result i1s TRUE).

bnez $t0, or end

MIPS code to compute cond2.

Assume that this leaves the value in $tO0.

or end:

Slides based on Dr. Sumanta Guha's work

