
I N T R O D U C T I O N

A D A P T E D F R O M
C S 1 4 6 S J S U (K A T E R I N A P O T I K A)

ALGORITHMS & ADVANCED
DATA STRUCTURES (#1)

Basic Data Structures
2

Efficiency
3

• Same problem can have different algorithms that
solve them
• Example:

Sorting problem (sort n numbers)

Algorithm for
sorting

Worst time

Insertion Sort

Merge Sort

Difference in running time
4

� Sort 10 million numbers use:
1. Insertion Sort: with 10 billion instructions/sec

machine and running time (instructions)

2. Merge Sort: with 10 million instructions/sec and
running time

Asymptotic Performance
5

• In this course, we care most about asymptotic
performance
§ How does the algorithm behave as the problem size gets very

large?
o Running time
o Memory/storage requirements
o Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation
6

• Intuitive feel for asymptotic (big-O) notation:
§ What does O(n) running time mean? O(n2)?

O(n lg n)?
§ How does asymptotic running time relate to asymptotic

memory usage?

• We will define this notation more formally and
completely

Practical Complexity
7

bigocheatsheet.com

Analysis of Algorithms
8

• Analysis is performed with respect to a
computational model

• We will usually use a generic uniprocessor random-
access machine (RAM) – all operations cost const
§ All memory equally expensive to access
§ No concurrent operations
§ All reasonable instructions take unit time
o Except, of course, function/method calls

§ Constant word size
o Unless we are explicitly manipulating bits

Input Size
9

• Time and space complexity
§ This is generally a function of the input size
o E.g., sorting, multiplication

§ How we characterize input size depends:
o Sorting: number of input items
o Multiplication: total number of bits
o Graph algorithms: number of nodes & edges
o Etc

Running Time
10

• Number of primitive steps that are executed
§ Except for time of executing a function/method call most

statements roughly require the same amount of time
o y = m * x + b
o c = 5 / 9 * (t - 32)
o z = f(x) + g(y)

Analysis
11

• Worst case
§ Provides an upper bound on running time
§ An absolute guarantee

• Average case
§ Provides the expected running time
§ Very useful, but treat with care: what is “average”?
o Random (equally likely) inputs
o Real-life inputs

Worst vs Average case Analysis
12

Worst case running time analysis
1. Gives an upper bound on the running time for any

input (guarantee)
2. For some algorithms, worst case occurs fairly often
3. Average case as bad as worst case

Review: Induction
13

• Suppose
§ S(k) is true for fixed

constant k
o Often k = 0

§ S(n) è S(n+1) for all
n >= k

• Then S(n) is true for all
n >= k

Proof By Induction
14

• Claim:S(n) is true for all n >= k
• Basis:

§ Show formula is true when n = k

• Inductive hypothesis:
§ Assume formula is true for an arbitrary n

• Step:
§ Show that formula is then true for n+1

Induction Example: Gaussian Closed Form
15

• Prove 1 + 2 + 3 + … + n = n(n+1) / 2
§ Basis:
o If n = 0, then 0 = 0(0+1) / 2

§ Inductive hypothesis:
o Assume 1 + 2 + 3 + … + n = n(n+1) / 2

§ Step (show true for n+1):
1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1)
= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2
= (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2

Induction Example: Geometric Closed Form
16

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for all a ¹ 1
§ Basis: show that a0 = (a0+1 - 1)/(a - 1)

a0 = 1 = (a1 - 1)/(a - 1)
§ Inductive hypothesis:
o Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

§ Step (show true for n+1):
a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)

