ALGORITHMS & ADVANCED
DATA STRUCTURES (#1)

O




Basic Data Structures

Data Structure

Search

Insertion

Deletion

Traversal

Array

Ordered array

Linked list

Ordered linked list
Binary tree (average)
Binary tree (worst case)

Balanced tree (average
and worst case)
Hash table

O(N)

O(logN)

O(N)
O(N)

|OZIo§Ni

O(N)

O(logN) |

o(1)
O(N)
o(1)
O(N)
O(logN)
O(N)
O(logN)

O(1)

O(N)
O(N)
O(N)
O(N)
O(logN)
O(N)
O(logN)

O(N)
O(N)
O(N)
O(N)
O(N)

[—]




Efficiency

* Same problem can have different algorithms that
solve them
* Example:

Sorting problem (sort n numbers)

Algorithm for Worst time
sorting

Insertion Sort

Merge Sort




Sort 10 million numbers use: \’ .

Insertion Sort: with 10 billion instructions/sec
machine and running time (instructions) on?

2(107)% instructions

1010 instructions/sec

= 20.000 sec (5.5 h)

Merge Sort: with 10 million instructions/sec and
running time 50nlogn
50+x107log10’ instructions

=1163 sec (20 min)

o

107 instructions/sec




* In this course, we care most about asymptotic
performance
- How does the algorithm behave as the problem size gets very
large?
o Running time
o Memory/storage requirements
o Bandwidth/power requirements/logic gates/etc.



* Intuitive feel for asymptotic (big-O) notation:

- What does O(n) running time mean? O(n?)?
O(nlg n)?

» How does asymptotic running time relate to asymptotic
memory usage?

* We will define this notation more formally and
completely



Practical Complexity

Operations

Big-O Complexity Chart
[Rorribie] (6ad] (21 | [Gooa) (ERESHNERE)

Elements




* Analysis is performed with respect to a
computational model

* We will usually use a generic uniprocessor random-
access machine (RAM) — all operations cost const
- All memory equally expensive to access
- No concurrent operations
- All reasonable instructions take unit time
o Except, of course, function/method calls
« Constant word size

o Unless we are explicitly manipulating bits



* Time and space complexity

- This is generally a function of the input size
o E.g., sorting, multiplication
- How we characterize input size depends:
o Sorting: number of input items
o Multiplication: total number of bits
o Graph algorithms: number of nodes & edges
o Etc



Running Time




Analysis




Worst case running time analysis

Gives an upper bound on the running time for any
input (guarantee)

For some algorithms, worst case occurs fairly often
Average case as bad as worst case



Review: Induction

Climbing an
Infinite Ladder

Suppose we have an infinite ladder:

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder,
then we can reach the next rung.

From (1), we can reach the first rung. Then by
applying (2), we can reach the second rung.
Applying (2) again, the third rung. And so on.
We can apply (2) any number of times to reach
any particular rung, no matter how high up.

This example motivates proof by
mathematical induction.




Proof By Induction




* Prove1+2+3+..+n=n(n+1)/2

- Basis:
o Ifn=o0,theno=o0(0+1) /2

» Inductive hypothesis:
o Assume1+2+3+..+n=nn+1)/2

» Step (show true for n+1):
1+2+...+n+n+1=(Q1+2+..+n)+ (n+1)
=n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2
= (n+1)(n+2)/2 =(m+1)(n+1+1) /2




Induction Example: Geometric Closed Form

* Provea®+a'+..+a*=(a"-1)/(a-1)foralla=1
- Basis: show that a® = (a®*'-1)/(a-1)
a°=1=(a'-1)/(a-1)
» Inductive hypothesis:
o Assumea®+a'+..+a*=(a"'-1)/(a-1)
« Step (show true for n+1):

a°+a'+..+a*'=a+a'+..+a"+a""
— (an+1 _ 1)/(a _ 1) + an+1 — (an+1+1 _ 1)/(a _ 1)




