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Basic Data Structures
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Efficiency
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• Same problem can have different algorithms that 
solve them
• Example:

Sorting problem (sort n numbers)

Algorithm for 
sorting

Worst time 

Insertion Sort

Merge Sort



Difference in running time
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� Sort 10 million numbers use:
1. Insertion Sort:  with 10 billion instructions/sec 

machine and running time (instructions) 

2. Merge Sort: with 10 million instructions/sec and 
running time 



Asymptotic Performance
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• In this course, we care most about asymptotic 
performance
§ How does the algorithm behave as the problem size gets very 

large?
o Running time
o Memory/storage requirements
o Bandwidth/power requirements/logic gates/etc.



Asymptotic Notation
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• Intuitive feel for asymptotic (big-O) notation:
§ What does O(n) running time mean?  O(n2)?

O(n lg n)? 
§ How does asymptotic running time relate to asymptotic 

memory usage?

• We will define this notation more formally and 
completely 



Practical Complexity
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bigocheatsheet.com



Analysis of Algorithms
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• Analysis is performed with respect to a 
computational model

• We will usually use a generic uniprocessor random-
access machine (RAM) – all operations cost const
§ All memory equally expensive to access
§ No concurrent operations
§ All reasonable instructions take unit time
o Except, of course, function/method calls

§ Constant word size
o Unless we are explicitly manipulating bits



Input Size
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• Time and space complexity
§ This is generally a function of the input size
o E.g., sorting, multiplication

§ How we characterize input size depends:
o Sorting: number of input items
o Multiplication: total number of bits
o Graph algorithms: number of nodes & edges
o Etc



Running Time
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• Number of primitive steps that are executed
§ Except for time of executing a function/method call most 

statements roughly require the same amount of time
o y = m * x + b
o c = 5 / 9 * (t - 32 )
o z = f(x) + g(y)



Analysis
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• Worst case
§ Provides an upper bound on running time
§ An absolute guarantee

• Average case
§ Provides the expected running time
§ Very useful, but treat with care: what is “average”?
o Random (equally likely) inputs
o Real-life inputs



Worst vs  Average case Analysis 
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Worst case running time analysis 
1. Gives an upper bound on the running time for any 

input (guarantee) 
2. For some algorithms, worst case occurs fairly often 
3. Average case as bad as worst case 



Review: Induction
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• Suppose 
§ S(k) is true for fixed 

constant k 
o Often k = 0

§ S(n) è S(n+1) for all 
n >= k

• Then S(n) is true for all 
n >= k



Proof By Induction
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• Claim:S(n) is true for all n >= k
• Basis:

§ Show formula is true when n = k

• Inductive hypothesis:
§ Assume formula is true for an arbitrary n

• Step:
§ Show that formula is then true for n+1



Induction Example: Gaussian Closed Form
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• Prove 1 + 2 + 3 + … + n = n(n+1) / 2
§ Basis:
o If n = 0, then 0 = 0(0+1) / 2

§ Inductive hypothesis:
o Assume 1 + 2 + 3 + … + n = n(n+1) / 2

§ Step (show true for n+1):
1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1)
= n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2 
= (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2



Induction Example: Geometric Closed Form
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• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for all a ¹ 1
§ Basis: show that a0 = (a0+1 - 1)/(a - 1) 

a0 = 1 = (a1 - 1)/(a - 1)
§ Inductive hypothesis: 
o Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1) 

§ Step (show true for n+1):
a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)


