ALGORITHMS & ADVANCED DATA STRUCTURES (#2)

GETTING STARTED-INSERTION SORT

ADAPTED FROM CS 146 SJSU (KATERINA POTIKA)

Sorting Problem

- Input: A sequence of n numbers $a_1, a_2, ..., a_n$
- Output: A permutation a'₁, a'₂, ..., a'_n of the input sequence such that

$$a'_1 \leq a'_2 \leq \cdots \leq a'_n$$

Example this instance: 31, 41, 59, 26, 41, 58

Sorting

Sorting. Given n elements, rearrange in ascending order. Obvious sorting applications. Non-obvious sorting applications. List files in a directory. Data compression. Organize an MP3 library. Computer graphics. List names in a phone book. Interval scheduling. Computational biology. Display Google PageRank Minimum spanning tree. results. Supply chain management. Simulate a system of particles. Problems become easier once sorted.

Find the median.Find the closest pair.Binary search in a database.Identify statistical outliers.Find duplicates in a mailing list.

Book recommendations on Amazon.Load balancing on a parallel computer.

• For *every* input instance, halts with correct output

• **Correct** algorithm then solves the problem

Many algorithms for the same problem

5

- Which is the best for a given application
- Number of items
- Somehow sorted
- Restrictions on the values
- Storage to be used
- etc

An Example: Insertion Sort

• Use a loop invariant to understand why an algorithm gives the correct answer.

Loop invariant (for InsertionSort) At the start of each iteration of the "outer" **for** loop (indexed by i) the subarray A[1..i-1] consists of the elements originally in A[1..i-1] but in sorted order.

• To proof correctness with a loop invariant we need to show three things:

➢ Initialization

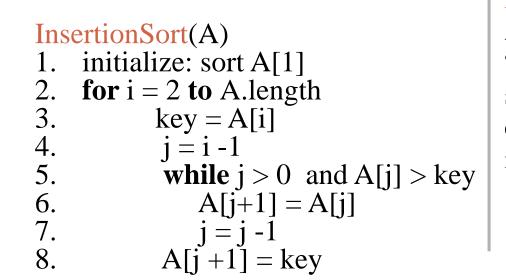
Invariant is true prior to the first iteration of the loop.

Maintenance

If the invariant is true before an iteration of the loop, it remains true before the next iteration.

> Termination

When the loop terminates, the invariant (usually along with the reason that the loop terminated) gives us a useful property that helps show that the algorithm is correct.



Loop invariant

At the start of each iteration of the "outer" **for** loop (indexed by i) the subarray A[1..i-1] consists of the elements originally in A[1..i-1] but in sorted order.

Initialization

Just before the first iteration, i = 2 A[1..i-1] = A[1], which is the element originally in A[1], and it is trivially sorted.

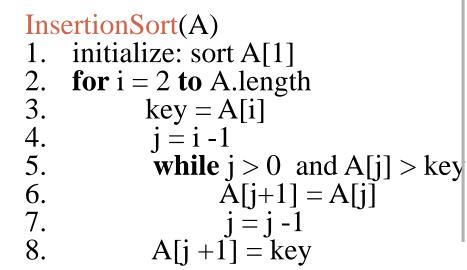
InsertionSort(A) 1. initialize: sort A[1] 2. for i = 2 to A.length 3. key = A[i] 4. j = i -1 5. while j > 0 and A[j] > key 6. A[j+1] = A[j] 7. j = j -1 8. A[j+1] = key

Loop invariant

At the start of each iteration of the "outer" **for** loop (indexed by i) the subarray A[1..i-1] consists of the elements originally in A[1..i-1] but in sorted order.

Maintenance

Strictly speaking need to prove loop invariant for "inner" while loop. Instead, note that body of while loop moves A[i-1], A[i-2], A[i-3], and so on, by one position to the right until proper position of key is found (which has value of A[i]) \rightarrow invariant maintained.



Loop invariant

At the start of each iteration of the "outer" **for** loop (indexed by i) the subarray A[1..i-1] consists of the elements originally in A[1..i-1] but in sorted order.

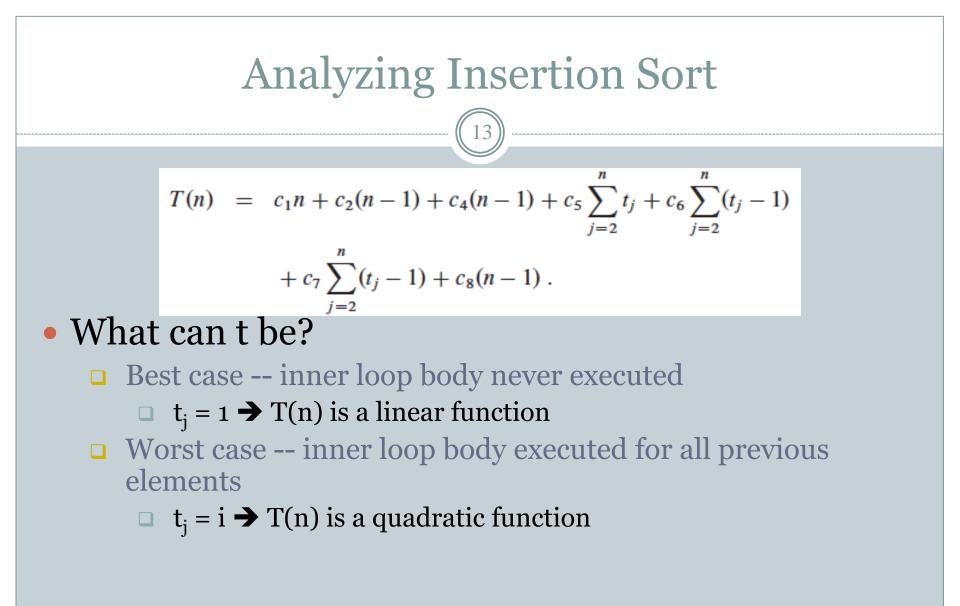
Termination

The outer **for** loop ends when i > n; this is when $i = n+1 \implies i-1 = n$. Plug n for i-1 in the loop invariant \implies the subarray A[1..n] consists of the elements originally in A[1..n] in sorted order.

Insertion sort Algorithm

INSERTION-SORT(A)		cost	times
1	for $j \leftarrow 2$ to length[A]	c_1	n
2	$key \leftarrow A[j]$	C2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j - 1]$.	0	n - 1
4	$i \leftarrow j - 1$	C4	n - 1
5	while $i > 0$ and $A[i] > key$	C5	$\sum_{j=2}^{n} t_j$
6	$ A[i+1] \leftarrow A[i] $	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C_7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i + 1] \leftarrow key$	c_8	n-1

InsertionSort is an *in place* algorithm: the numbers are rearranged within the array with only constant extra space.



Analysis

• Simplifications

- □ Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
 - > Highest-order term is what counts
 - > Asymptotic analysis!
 - As the input size grows larger it is the high order term that dominates

Upper Bound Notation

15

• We say InsertionSort's run time is $O(n^2)$

• Properly we should say run time is $in O(n^2)$

• Read O as "Big-O" (you'll also hear it as "order")

In general a function

• f(n) is O(g(n)) if there exist positive constants *c* and n_o such that f(n) $\leq c \cdot g(n)$ for all $n \geq n_o$

• Formally

• O(g(n)) = { f(n): ∃ positive constants *c* and n_o such that f(n) ≤ *c* · g(n) \forall n ≥ n_o }

Insertion Sort Is O(n²)

• Proof

• Suppose runtime is an² + bn + c

- × If any of a, b, and c are less than o replace the constant with its absolute value
- an² + bn + c ≤ (a + b + c)n² + (a + b + c)n + (a + b + c) ≤ 3(a + b + c)n² for n ≥ 1 Let c' = 3(a + b + c) and let $n_0 = 1$

Question

• Is InsertionSort O(n³)?

• Is InsertionSort O(n)?

Big O Fact

17

A polynomial of degree k is O(n^k)

• Proof:

• Suppose $f(n) = b_k n^k + b_{k-1} n^{k-1} + ... + b_1 n + b_0$ × Let $a_i = |b_i|$ • $f(n) \le a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

$$\leq n^k \sum a_i \frac{n^i}{n^k} \leq n^k \sum a_i \leq cn^k$$

Lower Bound Notation

18

- We say InsertionSort's run time is $\Omega(n)$
- In general a function
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_o such that $0 \le c \cdot g(n) \le f(n) \forall n \ge n_o$

Asymptotic Tight Bound

19

A function f(n) is Θ(g(n)) if ∃ positive constants c₁,
 c₂, and n_o such that

 $c_1 \operatorname{g}(n) \leq \operatorname{f}(n) \leq c_2 \operatorname{g}(n) \ \forall \ n \geq n_0$

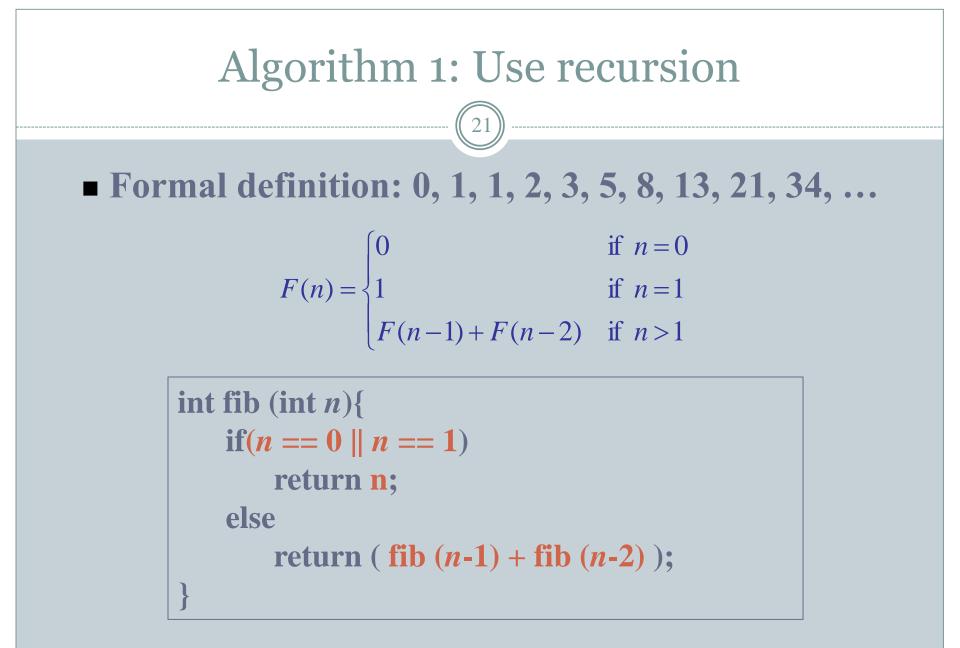
• Theorem

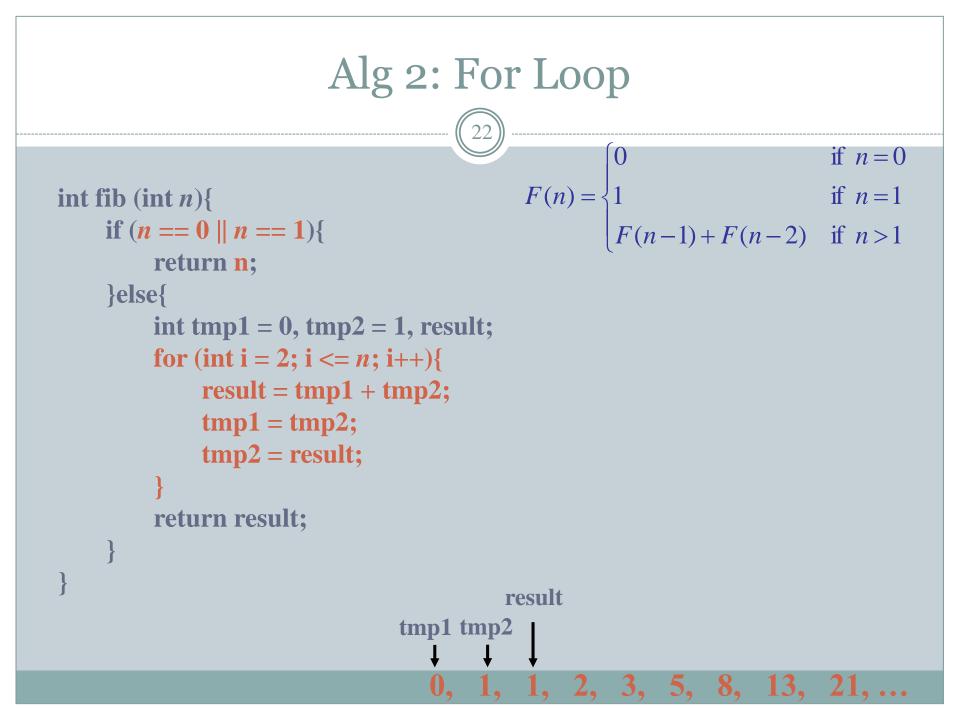
o f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$

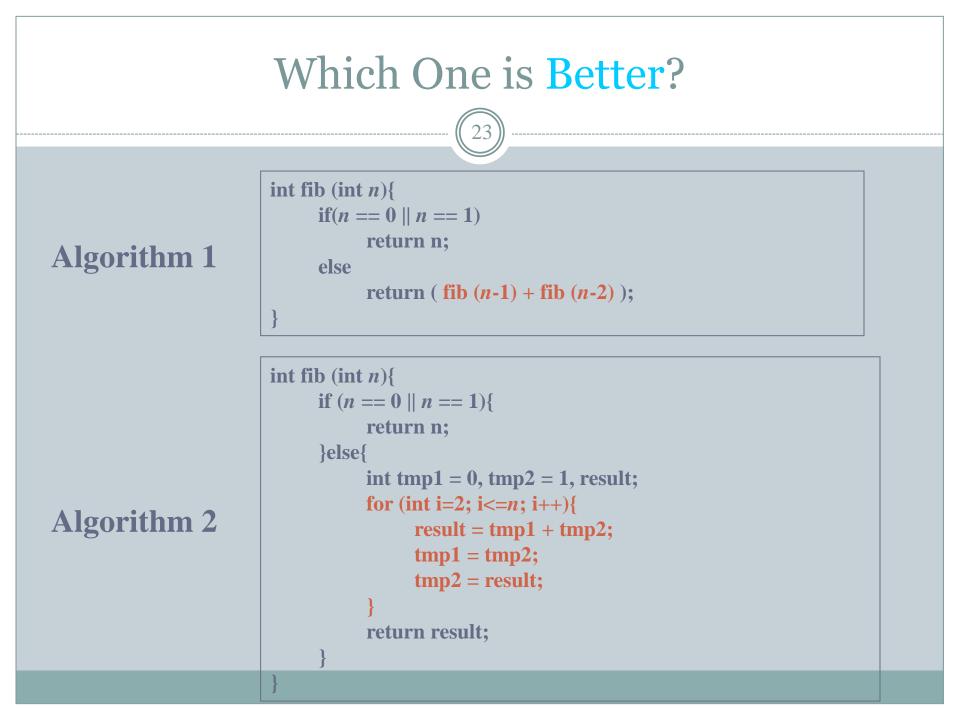
Example: Fibonacci numbers

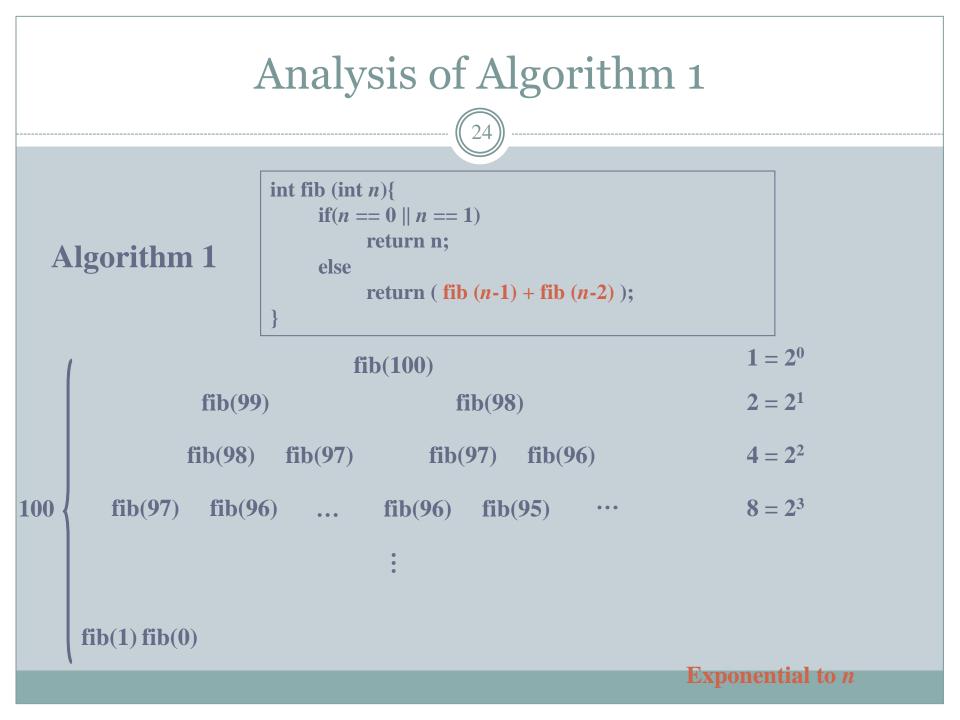
20

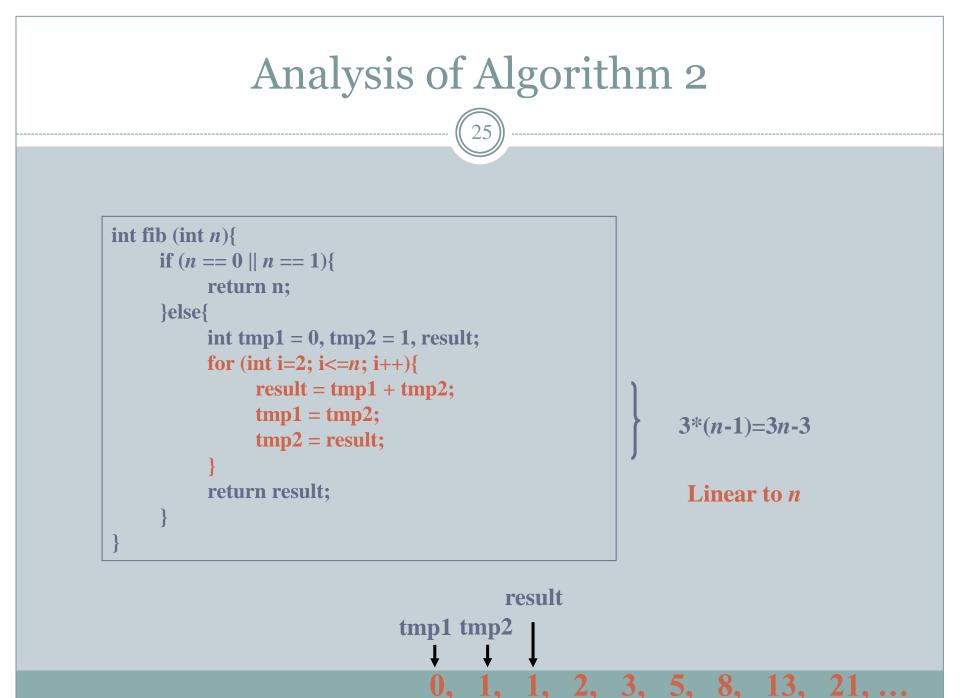
- Fibonacci numbers F(n), for n = 0, 1, 2, ..., are
 - **o** 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
 - Rabbits in an island







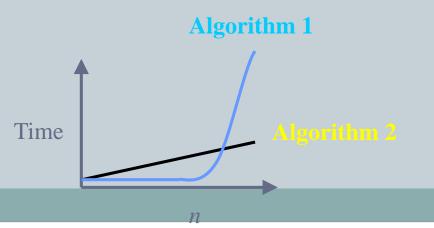




Which One is **Better**?

26

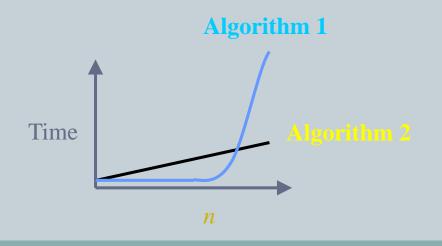
- Algorithm 2 runs faster in average and worst cases.
 If the Eibenessi number is quite small. Algorithm 1
- If the Fibonacci number is quite small, Algorithm 1.



Which One is **Better**?

27

 We are more interested in how an algorithm behaves as the problem size goes large.
 All algorithms behave similar under a small problem size.



Selection Sort

- A relatively easy to understand algorithm
- Sorts an array in <u>passes</u>
 - Each pass selects the next smallest element
 - At the end of the pass, places it where it belongs
- Efficiency is O(n²), hence called a *quadratic* sort
- Performs:
 - o O(n²) comparisons
 - o O(n) exchanges (swaps)