
G E T T I N G S TA RT E D - I N S E RT I O N S O RT

A D A P T E D F R O M

C S 1 4 6 S J S U (K AT E R I N A P O T I K A)

ALGORITHMS & ADVANCED

DATA STRUCTURES (#2)

Sorting Problem
2

Sorting
3

 Sorting. Given n elements, rearrange in ascending order.
Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank

results.

Problems become easier once sorted.

Find the median.

Find the closest pair.

Binary search in a database.

Identify statistical outliers.

Find duplicates in a mailing list.

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of particles.

Book recommendations on

Amazon.

Load balancing on a parallel

computer.

. . .

Correctness
4

 For every input instance, halts with correct output

 Correct algorithm then solves the problem

Many algorithms for the same problem
5

 Which is the best for a given application

• Number of items

• Somehow sorted

• Restrictions on the values

• Storage to be used

• etc

An Example: Insertion Sort

InsertionSort(A, n)

for i = 2 to n

key = A[i]

j = i - 1

while (j > 0) and (A[j] > key)

A[j+1] = A[j]

j = j - 1

A[j+1] = key

6

Correctness proof

7

 Use a loop invariant to understand why an algorithm

gives the correct answer.

Loop invariant (for InsertionSort)

At the start of each iteration of the “outer” for loop

(indexed by i) the subarray A[1..i-1] consists of the

elements originally in A[1..i-1] but in sorted order.

Correctness proof

8

 To proof correctness with a loop invariant we need to show three
things:

➢ Initialization
Invariant is true prior to the first iteration of the loop.

➢ Maintenance
If the invariant is true before an iteration of the loop, it remains true
before the next iteration.

➢ Termination
When the loop terminates, the invariant (usually along with the reason
that the loop terminated) gives us a useful property that helps show that
the algorithm is correct.

Correctness proof

9

InsertionSort(A)
1. initialize: sort A[1]
2. for i = 2 to A.length
3. key = A[i]
4. j = i -1
5. while j > 0 and A[j] > key
6. A[j+1] = A[j]
7. j = j -1
8. A[j +1] = key

Initialization
Just before the first iteration, i = 2 A[1..i-1] = A[1], which is the
element originally in A[1], and it is trivially sorted.

Loop invariant

At the start of each iteration of the

“outer” for loop (indexed by i) the

subarray A[1..i-1] consists of the

elements originally in A[1..i-1] but

in sorted order.

Correctness proof

10

InsertionSort(A)
1. initialize: sort A[1]
2. for i = 2 to A.length
3. key = A[i]
4. j = i -1
5. while j > 0 and A[j] > key
6. A[j+1] = A[j]
7. j = j -1
8. A[j +1] = key

Maintenance
Strictly speaking need to prove loop invariant for “inner” while loop.
Instead, note that body of while loop moves A[i-1], A[i-2], A[i-3], and so
on, by one position to the right until proper position of key is found (which
has value of A[i]) ➨ invariant maintained.

Loop invariant

At the start of each iteration of

the “outer” for loop (indexed

by i) the subarray A[1..i-1]

consists of the elements

originally in A[1..i-1] but in

sorted order.

Correctness proof

11

InsertionSort(A)
1. initialize: sort A[1]
2. for i = 2 to A.length
3. key = A[i]
4. j = i -1
5. while j > 0 and A[j] > key
6. A[j+1] = A[j]
7. j = j -1
8. A[j +1] = key

Termination
The outer for loop ends when i > n; this is when i = n+1 ➨ i-1 = n.
Plug n for i-1 in the loop invariant ➨ the subarray A[1..n] consists of
the elements originally in A[1..n] in sorted order.

Loop invariant

At the start of each iteration of

the “outer” for loop (indexed

by i) the subarray A[1..i-1]

consists of the elements

originally in A[1..i-1] but in

sorted order.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

InsertionSort is an in place algorithm:

the numbers are rearranged within the

array with only constant extra space.

Insertion sort Algorithm

12

Analyzing Insertion Sort
13

 What can t be?
❑ Best case -- inner loop body never executed

❑ tj = 1 ➔ T(n) is a linear function

❑ Worst case -- inner loop body executed for all previous
elements

❑ tj = i➔ T(n) is a quadratic function

Analysis

 Simplifications

❑ Ignore actual and abstract statement costs

❑ Order of growth is the interesting measure:

➢ Highest-order term is what counts

➢ Asymptotic analysis!

➢ As the input size grows larger it is the high order term that
dominates

14

Upper Bound Notation

 We say InsertionSort’s run time is O(n2)

 Properly we should say run time is in O(n2)

 Read O as “Big-O” (you’ll also hear it as “order”)

 In general a function

 f(n) is O(g(n)) if there exist positive constants c and n0 such
that f(n) c g(n) for all n n0

 Formally

 O(g(n)) = { f(n): positive constants c and n0 such that f(n) c
 g(n) n n0}

15

Insertion Sort Is O(n2)

 Proof

 Suppose runtime is an2 + bn + c

 If any of a, b, and c are less than 0 replace the constant with its
absolute value

an2 + bn + c (a + b + c)n2 + (a + b + c)n + (a + b + c)

 3(a + b + c)n2 for n 1

Let c’ = 3(a + b + c) and let n0 = 1

 Question

 Is InsertionSort O(n3)?

 Is InsertionSort O(n)?

16

Big O Fact

 A polynomial of degree k is O(nk)

 Proof:

 Suppose f(n) = bknk + bk-1n
k-1 + … + b1n + b0

 Let ai = | bi |

 f(n) aknk + ak-1n
k-1 + … + a1n + a0

k

i

k

k

i

i

k cnan
n

n
an

17

Lower Bound Notation

 We say InsertionSort’s run time is (n)

 In general a function

 f(n) is (g(n)) if positive constants c and n0 such that
0 cg(n) f(n) n n0

18

Asymptotic Tight Bound

 A function f(n) is (g(n)) if positive constants c1,
c2, and n0 such that

c1 g(n) f(n) c2 g(n) n n0

 Theorem

 f(n) is (g(n)) iff f(n) is both O(g(n)) and (g(n))

19

Example: Fibonacci numbers

20

 Fibonacci numbers F(n), for n = 0, 1, 2, …, are

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

 Rabbits in an island

Algorithm 1: Use recursion

−+−

=

=

=

1 if)2()1(

1 if1

0 if0

)(

nnFnF

n

n

nF

int fib (int n){

if(n == 0 || n == 1)

return n;

else

return (fib (n-1) + fib (n-2));

}

◼ Formal definition: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

21

Alg 2: For Loop

int fib (int n){

if (n == 0 || n == 1){

return n;

}else{

int tmp1 = 0, tmp2 = 1, result;

for (int i = 2; i <= n; i++){

result = tmp1 + tmp2;

tmp1 = tmp2;

tmp2 = result;

}

return result;

}

}

0, 1, 1, 2, 3, 5, 8, 13, 21, …

tmp1 tmp2

result

−+−

=

=

=

1 if)2()1(

1 if1

0 if0

)(

nnFnF

n

n

nF

22

Which One is Better?

int fib (int n){

if (n == 0 || n == 1){

return n;

}else{

int tmp1 = 0, tmp2 = 1, result;

for (int i=2; i<=n; i++){

result = tmp1 + tmp2;

tmp1 = tmp2;

tmp2 = result;

}

return result;

}

}

int fib (int n){

if(n == 0 || n == 1)

return n;

else

return (fib (n-1) + fib (n-2));

}

Algorithm 2

Algorithm 1

23

Analysis of Algorithm 1

int fib (int n){

if(n == 0 || n == 1)

return n;

else

return (fib (n-1) + fib (n-2));

}

Algorithm 1

fib(100)

fib(99) fib(98)

fib(98) fib(97) fib(97) fib(96)

fib(97) fib(96) fib(96) fib(95)… …

…

fib(1) fib(0)

1 = 20

100

Exponential to n

2 = 21

4 = 22

8 = 23

24

Analysis of Algorithm 2

int fib (int n){

if (n == 0 || n == 1){

return n;

}else{

int tmp1 = 0, tmp2 = 1, result;

for (int i=2; i<=n; i++){

result = tmp1 + tmp2;

tmp1 = tmp2;

tmp2 = result;

}

return result;

}

}

3*(n-1)=3n-3

Linear to n

0, 1, 1, 2, 3, 5, 8, 13, 21, …

tmp1 tmp2

result

25

 Algorithm 2 runs faster in average and worst cases.

 If the Fibonacci number is quite small, Algorithm 1.

Which One is Better?

Algorithm 1

Algorithm 2

n

Time

26

Which One is Better?

 We are more interested in how an algorithm behaves
as the problem size goes large.

 All algorithms behave similar under a small problem size.

Algorithm 1

Algorithm 2

n

Time

27

28

Selection Sort

 A relatively easy to understand algorithm

 Sorts an array in passes

 Each pass selects the next smallest element

 At the end of the pass, places it where it belongs

 Efficiency is O(n2), hence called a quadratic sort

 Performs:

 O(n2) comparisons

 O(n) exchanges (swaps)

