
O - N O TAT I O N

A D A P T E D F R O M

C S 1 4 6 S J S U (K AT E R I N A P O T I K A)

ALGORITHMS & ADVANCED

DATA STRUCTURES (#3)

Measures of Algorithm Complexity

2

◼ Worst-Case Running Time: the longest time for any input size
of n
◼ an upper bound on running time for any input

◼ Best-Case Running Time: the shortest time for any input size
of n
◼ an lower bound on running time for any input

◼ Average-Case Behavior: the expected performance averaged
over all possible inputs
◼ it is generally better than worst case behavior, but sometimes it’s roughly

as bad as worst case

Order of Growth

3

◼ For very large input size n, it is the rate of grow, or

order of growth that matters asymptotically

◼ ignore the lower-order terms, since they are relatively

insignificant for very large n

◼ ignore leading term’s constant coefficients, since they are not as

important for the rate of growth in computational efficiency for

very large n

◼ Higher order functions of n are normally considered

less efficient

F O R M A L D E F I N I T I O N S

4

O - Notation

Big-O notation

(Upper Bound – Worst Case)

5

Big-O notation

(Upper Bound – Worst Case)

6

◼ A mathematically formal way of ignoring constant factors, and
looking only at the “shape” of the function

◼ f(n)=O(g(n)) should be considered as saying that “f(n) is at
most g(n), up to constant factors”.

◼ We usually will have f(n) be the running time of an algorithm
and g(n) a nicely written function

◼ Example: The running time of insertion sort algorithm is O(n2)

Big-O notation examples

7

Big-O notation

(Upper Bound – Worst Case)
8

◼ ignore the multiplicative constants and the
lower order terms, e.g.,
◼ n, n+1, n+80, 40n, n + log n is O(?)

◼ n1.1 + 10000000000n is O(?)

◼ n2 is O(?)

◼ 3n2 + 6n + log n + 24.5 is O(?)

Practice
10

◼ What is the O-notation of f(N)=3n2 + 6n + log n +24.5

A. O(n)

B. O(n2)

C. O(n3)

D. B and C

Ω-notation (Omega)

(Lower Bound – Best Case)
11

Ω-notation (Omega)

12

◼ We say Insertion Sort’s run time T(n) is Ω(n)

◼ Why?

◼ For example

◼ the worst-case running time of insertion sort is O(n2), and

◼ the best-case running time of insertion sort is Ω(n)

Ω-notation (Omega)

13

Θ notation (Theta)

(Tight Bound)
14

Θ notation (Theta)

15

◼ We say g(n) is an asymptotic tight bound for f(n):

◼ Theta notation

◼ Θ(g(n)) means that as n → ∞, the execution
time f(n) is at most c2.g(n) and at least
c1.g(n) for some constants c1 and c2.

◼ f(n) = Θ(g(n)) if and only if

◼ f(n) = Ο(g(n)) & f(n) = Ω(g(n))

Θ notation (Theta) - Example

16

◼ Example1:

◼ Show that 6n3  (n2)
◼ Suppose for the purpose of contradiction that c2 and n0

exist such that 6n3  c2n
2 for all n  n0

◼ Dividing by n2 yields

◼ n  c2/6

◼ which cannot possibly hold for arbitrary large n, since c2 is
constant

◼ Also, limn→[6n3 / n2] = limn→[6n] = , which is not a non-
zero constant

o-notation

17

We say g(n) is an upper bound for f(n) that is not

asymptotically tight (strictly).

O() versus o()

18

O(g(n)) = {f(n): there exist positive constants c and n0 such
that 0 f(n)  cg(n), for all n  n0 }.

o(g(n)) = {f(n): for any positive constant c > 0, there exists a
constant n0 > 0 such that 0  f(n) < cg(n) for all n  n0 }.

Thus o(f(n)) is a weakened O(f(n)).

For example: n2 = O(n2)

n2  o(n2)

n2 = O(n3)

n2 = o(n3)

ω-notation

19

We say g(n) is a lower bound for f(n) that is not asymptotically

tight.

Properties

20

◼ Transitivity
f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))
f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

◼ Symmetry
f(n) = (g(n)) if and only if g(n) = (f(n))

◼ Transpose Symmetry
f(n) = O(g(n)) if and only if g(n) = (f(n))

Some Common Name for Complexity

21

O(1) Constant time

O(log n) Logarithmic time

O(log2 n) Log-squared time

O(n) Linear time

O(n2) Quadratic time

O(n3) Cubic time

O(ni) for some i Polynomial time

O(2n) Exponential time

Growth Rates of some Functions

22

() () () ()

() () () ()
() ()

() ()
() ()
() () ()
() ()n

nnn

nn

ncc

nOnO

OOO

OnO

cOnO

nOnO

nOnOnnOnnO

nOnOnOnO





=

=







!

432

2

constant any for 2

loglog

loglog

2loglog

log

43

25.12

2

E
x
p

o
n

e
n

tia
l

F
u

n
c
tio

n
s

P
o

ly
n

o
m

ia
l

F
u

n
c
tio

n
s

T H I S S E C T I O N S L I D E S B Y K E V I N W A Y N E .
C O P Y R I G H T © 2 0 0 5 P E A R S O N - A D D I S O N W E S L E Y .

A L L R I G H T S R E S E R V E D .

A Survey of Common Running
Times

23

Why it matters
24

Linear Time: O(n)
25

 Linear time. Running time is at most a constant
factor times the size of the input.

 Computing the maximum. Compute maximum of n
numbers a1, …, an.

max = a1
for i = 2 to n {

if (ai > max)

max  ai
}

Linear Time: O(n)
26

 Merge. Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn

into sorted whole.

 Claim. Merging two lists of size n takes O(n) time.
 Pf. After each comparison, the length of output list increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i

else(ai > bj)append bj to output list and increment j

}

append remainder of nonempty list to output list

O(n lg n) Time
27

 O(n lg n) time. Arises in divide-and-conquer algorithms.

 Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n lg n) comparisons.

 Largest empty interval. Given n time-stamps x1, …, xn on
which copies of a file arrive at a server, what is largest interval
of time when no copies of the file arrive?

 O(n log n) solution. Sort the time-stamps. Scan the sorted list
in order, identifying the maximum gap between successive
time-stamps.

also referred to as linearithmic time

Quadratic Time: O(n2)
28

 Quadratic time. Enumerate all pairs of elements.

 Closest pair of points. Given a list of n points in the plane (x1, y1), …, (xn, yn), find
the pair that is closest.

 O(n2) solution. Try all pairs of points.

 Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

for j = i+1 to n {

d  (xi - xj)
2 + (yi - yj)

2

if (d < min)

min  d

}

}

no need to

take square roots

Cubic Time: O(n3)
29

 Cubic time. Enumerate all triples of elements.

 Set disjointness. Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

 O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {

foreach other set Sj {

foreach element p of Si {

determine whether p also belongs to Sj

}

if (no element of Si belongs to Sj)

report that Si and Sj are disjoint

}

}

Polynomial Time: O(nk) Time
30

 Independent set of size k. Given a graph, are there k nodes such
that no two are joined by an edge?

 O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets =
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

check whether S in an independent set

if (S is an independent set)

report S is an independent set

}

}



n

k









 =
n (n−1) (n− 2) (n− k +1)

k (k −1) (k − 2) (2) (1)
 

nk

k!
poly-time for k=17,

but not practical

k is a constant

Exponential Time
31

 Independent set. Given a graph, what is maximum
size of an independent set?

 O(n2 2n) solution. Enumerate all subsets.

S*  

foreach subset S of nodes {

check whether S in an independent set

if (S is largest independent set seen so far)

update S*  S

}

}

