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Measures of Algorithm Complexity
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◼ Worst-Case Running Time:  the longest time for any input size 
of n
◼ an upper bound on running time for any input

◼ Best-Case Running Time:  the shortest time for any input size 
of n
◼ an lower bound on running time for any input

◼ Average-Case Behavior:  the expected performance averaged 
over all possible inputs
◼ it is generally better than worst case behavior, but sometimes it’s roughly 

as bad as worst case



Order of Growth
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◼ For very large input size n, it is the rate of grow, or 

order of growth that matters asymptotically

◼ ignore the lower-order terms, since they are relatively 

insignificant for very large n

◼ ignore leading term’s constant coefficients, since they are not as 

important for the rate of growth in computational efficiency for 

very large n

◼ Higher order functions of n are normally considered 

less efficient



F O R M A L  D E F I N I T I O N S
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O - Notation



Big-O notation 

(Upper Bound – Worst Case)
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Big-O notation 

(Upper Bound – Worst Case)
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◼ A mathematically formal way of ignoring constant factors, and 
looking only at the “shape” of the function

◼ f(n)=O(g(n)) should be considered as saying that “f(n) is at 
most g(n), up to constant factors”.

◼ We usually will have f(n) be the running time of an algorithm 
and g(n) a nicely written function

◼ Example: The running time of insertion sort algorithm is O(n2)



Big-O notation examples
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Big-O notation 

(Upper Bound – Worst Case)
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◼ ignore the multiplicative constants and the 
lower order terms, e.g.,
◼ n, n+1, n+80, 40n, n + log n is O(?)

◼ n1.1 + 10000000000n is O(?)

◼ n2 is O(?)

◼ 3n2 + 6n + log n + 24.5 is O(?)



Practice
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◼ What is the O-notation of  f(N)=3n2 + 6n + log n +24.5

A. O(n)

B. O(n2)

C. O(n3)

D. B and C



Ω-notation (Omega)

(Lower Bound – Best Case) 
11



Ω-notation (Omega)
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◼ We say Insertion Sort’s run time T(n) is Ω(n)

◼ Why?

◼ For example

◼ the worst-case running time of insertion sort is O(n2), and 

◼ the best-case running time of insertion sort is Ω(n)



Ω-notation (Omega)
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Θ notation (Theta)

(Tight Bound)
14



Θ notation (Theta)
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◼ We say g(n) is an asymptotic tight bound for f(n):

◼ Theta notation

◼ Θ(g(n)) means that as n → ∞, the execution 
time f(n) is at most c2.g(n) and at least
c1.g(n) for some constants c1 and c2.

◼ f(n) = Θ(g(n))  if and only if  

◼ f(n) = Ο(g(n))  &  f(n) = Ω(g(n))



Θ notation (Theta) - Example
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◼ Example1:

◼ Show that 6n3  (n2)
◼ Suppose for the purpose of contradiction that c2 and n0

exist such that 6n3  c2n
2 for all n  n0

◼ Dividing by n2 yields

◼ n   c2/6

◼ which cannot possibly hold for arbitrary large n, since c2 is 
constant

◼ Also, limn→[6n3 / n2 ] = limn→[6n] = , which is not a non-
zero constant



o-notation
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We say g(n) is an upper bound for f(n) that is not

asymptotically tight (strictly).



O() versus o()
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O(g(n)) = {f(n): there exist positive constants c and n0 such 
that 0 f(n)  cg(n), for all n  n0 }.

o(g(n)) = {f(n): for any positive constant c > 0, there exists a 
constant n0 > 0 such that 0  f(n) < cg(n) for all n  n0 }.

Thus o(f(n)) is a weakened O(f(n)).

For example: n2 = O(n2)

n2  o(n2)

n2 = O(n3)

n2 = o(n3)



ω-notation
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We say g(n) is a lower bound for f(n) that is not asymptotically 

tight.



Properties
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◼ Transitivity
f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))
f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

◼ Symmetry
f(n) = (g(n)) if and only if g(n) = (f(n))

◼ Transpose Symmetry
f(n) = O(g(n)) if and only if g(n) = (f(n)) 



Some Common Name for Complexity
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O(1) Constant time

O(log n) Logarithmic time

O(log2 n) Log-squared time

O(n) Linear time

O(n2) Quadratic time

O(n3) Cubic time

O(ni ) for some i Polynomial time

O(2n) Exponential time



Growth Rates of some Functions
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A Survey of Common Running 
Times
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Why it matters
24



Linear Time:  O(n)
25

 Linear time.  Running time is at most a constant 
factor times the size of the input. 

 Computing the maximum.  Compute maximum of n 
numbers a1, …, an.

max = a1
for i = 2 to n {

if (ai > max)

max  ai
}



Linear Time:  O(n)
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 Merge.  Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn

into sorted whole.

 Claim.  Merging two lists of size n takes O(n) time.
 Pf.  After each comparison, the length of output list increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i

else(ai > bj)append bj to output list and increment j

}

append remainder of nonempty list to output list



O(n lg n) Time
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 O(n lg n) time.  Arises in divide-and-conquer algorithms.

 Sorting.  Mergesort and heapsort are sorting algorithms that 
perform O(n lg n) comparisons.

 Largest empty interval.  Given n time-stamps x1, …, xn on 
which copies of a file arrive at a server, what is largest interval 
of time when no copies of the file arrive?

 O(n log n) solution.  Sort the time-stamps.  Scan the sorted list 
in order, identifying the maximum gap between successive 
time-stamps.

also referred to as linearithmic time



Quadratic Time:  O(n2)
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 Quadratic time.  Enumerate all pairs of elements.

 Closest pair of points.  Given a list of n points in the plane (x1, y1), …, (xn, yn), find 
the pair that is closest.

 O(n2) solution.  Try all pairs of points.

 Remark.  (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

for j = i+1 to n {

d  (xi - xj)
2 + (yi - yj)

2

if (d < min)

min  d

}

}

no need to

take square roots



Cubic Time:  O(n3)
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 Cubic time.  Enumerate all triples of elements.

 Set disjointness.  Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

 O(n3) solution.  For each pairs of sets, determine if they are disjoint.

foreach set Si {

foreach other set Sj {

foreach element p of Si {

determine whether p also belongs to Sj

}

if (no element of Si belongs to Sj)

report that Si and Sj are disjoint

}

}



Polynomial Time:  O(nk) Time
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 Independent set of size k.  Given a graph, are there k nodes such 
that no two are joined by an edge?

 O(nk) solution.  Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets = 
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

check whether S in an independent set

if (S is an independent set)

report S is an independent set

}

}

 

n

k

 

 
 

 

 
 =
n (n−1) (n− 2) (n− k +1)

k (k −1) (k − 2) (2) (1)
   

nk

k!
poly-time for k=17,

but not practical

k is a constant



Exponential Time
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 Independent set.  Given a graph, what is maximum 
size of an independent set?

 O(n2 2n) solution.  Enumerate all subsets.

S*  

foreach subset S of nodes {

check whether S in an independent set

if (S is largest independent set seen so far)

update S*  S

}

}


