ALGORITHMS & ADVANCED
DATA STRUCTURES (#3)

O




= Worst-Case Running Time: the longest time for any input size
of n

= an upper bound on running time for any input

= Best-Case Running Time: the shortest time for any input size
of n

= an lower bound on running time for any input

= Average-Case Behavior: the expected performance averaged
over all possible inputs

m 1t 1s generally better than worst case behavior, but sometimes it’s roughly
as bad as worst case



For very large input size n, it is the rate of grow, or
order of growth that matters asymptotically

= Ignore the lower-order terms, since they are relatively
Insignificant for very large n

m Ignore leading term s constant coefficients, since they are not as
Important for the rate of growth in computational efficiency for
very large n

Higher order functions of n are normally considered
less efficient



O - Notation

_____________________________________________________________________________________

FORMAL DEFINITIONS




Big-O notation
(Upper Bound — Worst Case)

O(g(n)) ={f(n) : there exist positive constants ¢ and nq such that
0< f(n) <cg(n)torall n = ny}.

() -notation

cg(n)

fin)

n

g(n) 1s an asymptotic upper bound for f(n).




A mathematically formal way of ignoring constant factors, and
looking only at the “shape’ of the function

f(n)=0(g(n)) should be considered as saying that “f(n) Is at
most g(n), up to constant factors”.

We usually will have f(n) be the running time of an algorithm
and g(n) a nicely written function

Example: The running time of insertion sort algorithm is O(n?)



Big-O notation examples

Example: 2n* = O(n?), with ¢ = 1 and ng = 2.

Examples of functions in O (n?):

”2

n? +n
n* + 1000n

100012 4 1000n
Also,

n

n/1000
”1.99999

n*/lglglgn




Big-O notation
(Upper Bound — Worst Case)

= Ignore the multiplicative constants and the
lower order terms, e.g.,

= Nn,n+1,n+80,40n,n+ logn 1S O(?)
= nil+10000000000N 1S O(?)
s N2 IS 0(7)

= 3n°+6n+logn+245 1S O(?)




Practice




Q-notation (Omega)
(Lower Bound — Best Case)

€2(g(n)) = {f(n): there exist positive constants ¢ and nq such that
0<cg(n) < f(n)torall n = ngy} .

fin)

cg(n)

H
ny

g(n) is an asymptotic lower bound tor f (n).




Q-notation (Omega)




Q-notation (Omega)

Example: /n = Q(lgn), with ¢ = | and ng = 16.
Examples of functions in € (n?):

H2

n* +n
H2 — N
100012 4+ 1000n
1000122 — 1000n

Also,

”3

n 2.00001

n*lglglgn
2%




O notation (Theta)
(Tight Bound)

O(g(n)) = {f(n) : there exist positive constants ¢y, ¢;, and ng such that
0 =<cig(n) = f(n) = cg(n) forall n = ngp} .

n
Hy

g(n) is an asymptotically tight bound for f(n).



® notation (Theta)

= We say g(n) is an asymptotic tight bound for f(n):

= Theta notation

= O(g(n)) means that as n — oo, the execution
time f(n) is at most c,.g(n) and at least
c,.g(n) for some constants ¢, and c,,.

= f(n) = ©(g(n)) if and only if
= f(n) = O(g(n)) & f(n) = Q(gn))




= Examplei:
= Show that 6n3 = ®(n?)

= Suppose for the purpose of contradiction that ¢, and n,
exist such that 6n® < c,n® foralln>n,
»« Dividing by n? yields
= N <c,/6

= which cannot possibly hold for arbitrary large n, since ¢, is
constant

» Also, lim, , [6n3/ n?]=lim,  [6n] = o, which is not a non-
zero constant




0-notation

o(g(n)) = {f(n) : for all constants ¢ = 0, there exists a constant
ng = O such that 0 < f(n) < cg(n) for all n = ngp}

fn)

Another view, probably easier to use: lim 0.

=% g(n)

n].9999 — O(HZ)

n*/lgn = o(n?)

n* # o(n?) (just like 2 # 2)
n? /1000 # o(n?)



O() versus o()

O(g(n)) = {f(n): there exist positive constants ¢ and n, such
that O< f(n) < cg(n), for all n> ny}.

o(g(n)) = {f(n): for any positive constant ¢ > O, there exists a
constant ny > O such that 0 < f(n) < cg(n) for all n> n,}.

Thus o(f(n)) is a weakened O(f(n)).
For example: n? = 0(n?)
n? = o(n?)
n? = O(n3)
n? = o(n3)




w-notation

w(g(n)) = {f(n): forall constants ¢ = 0, there exists a constant
ng = Osuchthat O < cg(n) < f(n) forall n = ngp} .

Another view, again, probably easier to use: lim ron _

= OQ.
n—00 g(ﬁ)

nZ.ﬂﬂDl — ﬂ)(ﬂz)
n*lgn = w(n?)

n* # w(n?)



= Transitivity
f(n) = ®(9(n)) & g(n) = ©(h(n)) = f(n) = ©(h(n))
f(n) = O(g(n)) & g(n) = O(h(n)) = f(n) = O(h(n))
f(n) = Q(g(n)) & g(n) = Q(h(n)) = f(n) = Q(h(n))

= Symmetry
f(n) = ©(g(n)) if and only if g(n) = ©(f(n))

= Transpose Symmetry

f(n) = O(g(n)) if and only if g(n) = Q(f(n))



O(1) Constant time
O(log n) Logarithmic time
O(log? n) Log-squared time
O(n) Linear time

O(n?) Quadratic time
O(n3) Cubic time

O(n') for some i Polynomial time
O(2M) Exponential time




O(logn)< O(log® n)< o(ﬁ)< O(n) \
<0O(nlogn)<0(nlog? n)< 0(n**)<0(n?)

< O(n3)< O(n4)

Y

0(n®)=0(2") for any constant c -

<O( Iogn) O(Zlog n)
<0(2")<0(3")<ola")
<o(n)<o(n")

Y

suolnoun4
renuauodx3

suoInoun4
lelwouA|jod



A Survey of Common Running

Times

THIS SECTION SLIDES BY KEVIN WAYNE.
COPYRIGHT © 2005 PEARSON-ADDISON WESLEY.
ALL RIGHTS RESERVED.




Why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10 years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n’ 1.5" n n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 1025 years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <lsec <1sec 1sec 12,892 years  10!7 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n=10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long




Linear Time: O(n)

» Linear time. Running time is at most a constant
factor times the size of the input.

» Computing the maximum. Compute maximum of n
numbers a,, ..., a,.




Linear Time: O(n)

» Merge. Combine two sorted listS a = 4, ,a,,...2, with & = b,,5,,..,5,
into sorted whole.

/ /11717 | A
Merged result \
///|b

* Claim. Merging two lists of size n takes O(n) time.
» Pf. After each comparison, the length of output list increases by 1.




O(n Ig n) time. Arises in divide-and-conquer algorithms.
N\

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n Ig n) comparisons.

Largest empty interval. leen n time- -stamps X X, On
which copies of a file arrive at a server, what is iargest interval
of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list
in order, identifying the maximum gap between successive
time- stamps



Quadratic Time: O(n2)

* Quadratic time. Enumerate all pairs of elements.

» Closest pair of points. Given a list of n points in the plane (x,,y,), ..., (X,, ¥,), find
the pair that is closest.

* O(n2) solution. Try all pairs of points.

no need to

take square roots

» Remark. Q(n2) seems inevitable, but this is just an illusion.




Cubic Time: O(n3)

* Cubic time. Enumerate all triples of elements.

» Set disjointness. Givenn sets S,, ..., S each of which is a subset of
1, 2, ..., 1, is there some pair of these which are disjoint?

* O(n3) solution. For each pairs of sets, determine if they are disjoint.




Polynomial Time: O(nk) Time

» Independent set of size k. Given a graph, are there k nodes such

that no two are joined by an edge? N
k is a constant

* O(nk) solution. Enumerate all subsets of k nodes.

Check whether S is an independent set = O(k?2).
Number of k element subsets = (nJ B (1) (n=2) (K1) nk
— <

O(k2 n* / k!) = O(n¥). x

poly-time for k=17,
but not practical

k) k(=) (k=2)--2)1) ~ K




Exponential Time

» Independent set. Given a graph, what is maximum
size of an independent set?

* O(n22n) solution. Enumerate all subsets.




