ALGORITHMS & ADVANCED DATA STRUCTURES (#3)

O-NOTATION

ADAPTED FROM CS 146 SJSU (KATERINA POTIKA)

Measures of Algorithm Complexity

- Worst-Case Running Time: the longest time for any input size of n
 - an upper bound on running time for any input
- Best-Case Running Time: the shortest time for any input size of n
 - an lower bound on running time for any input
- Average-Case Behavior: the expected performance averaged over all possible inputs
 - it is generally better than worst case behavior, but sometimes it's roughly as bad as worst case

Order of Growth

- For very large input size n, it is the *rate of grow*, or order of growth that matters asymptotically
 - ignore the *lower-order terms*, since they are relatively insignificant for very large n
 - ignore *leading term's constant coefficients*, since they are not as important for the rate of growth in computational efficiency for very large n
- Higher order functions of *n* are normally considered less efficient

O - Notation

FORMAL DEFINITIONS

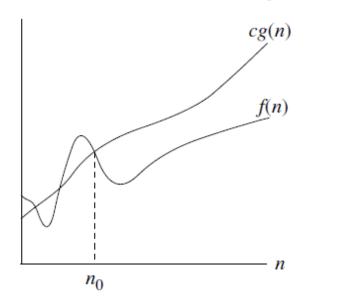
4

Big-O notation (Upper Bound – Worst Case)

5

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$



g(n) is an *asymptotic upper bound* for f(n).

Big-O notation (Upper Bound – Worst Case)

6

• A mathematically formal way of ignoring constant factors, and looking only at the "shape" of the function

- f(n)=O(g(n)) should be considered as saying that "f(n) is at most g(n), up to constant factors".
- We usually will have f(n) be the running time of an algorithm and g(n) a nicely written function
- *Example*: The running time of insertion sort algorithm is $O(n^2)$

Big-O notation examples

7

Example: $2n^2 = O(n^3)$, with c = 1 and $n_0 = 2$. Examples of functions in $O(n^2)$:

 n^{2} $n^{2} + n$ $n^{2} + 1000n$ $1000n^{2} + 1000n$ Also, n n/1000 $n^{1.99999}$

 $n^2/\lg \lg \lg n$

Big-O notation (Upper Bound – Worst Case)

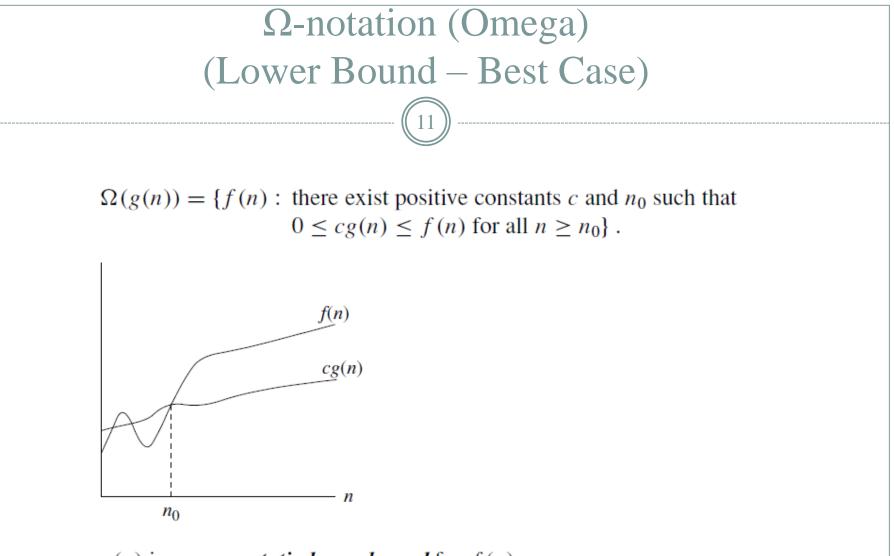
 ignore the multiplicative constants and the lower order terms, e.g.,

- n, n+1, n+80, 40n, n + log n
- \square n^2
- $3n^2 + 6n + \log n + 24.5$

is O(?) is *O(?)* is *O(?)* is *O(?)*

• What is the O-notation of $f(N)=3n^2+6n+\log n+24.5$

A. O(n)
B. O(n²)
C. O(n³)
D. B and C



g(n) is an *asymptotic lower bound* for f(n).

Ω -notation (Omega)

12

- We say Insertion Sort's run time T(n) is $\Omega(n)$
 - Why?
- For example
 - the worst-case running time of insertion sort is $O(n^2)$, and
 - the best-case running time of insertion sort is $\Omega(n)$

Ω -notation (Omega)

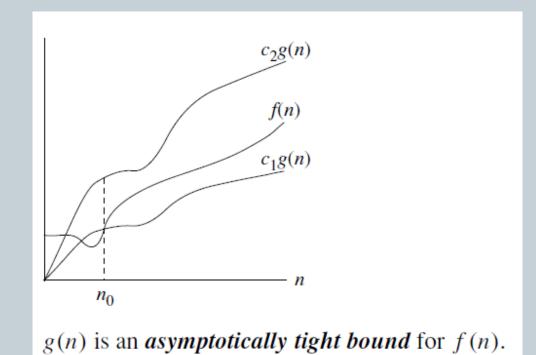
13)

Example: $\sqrt{n} = \Omega(\lg n)$, with c = 1 and $n_0 = 16$. Examples of functions in $\Omega(n^2)$:

```
n^{2}
n^{2} + n
n^{2} - n
1000n^{2} + 1000n
1000n^{2} - 1000n
Also,
n^{3}
n^{2.00001}
n^{2} \lg \lg \lg n
2^{2^{n}}
```

Θ notation (Theta)(Tight Bound)

 $\Theta(g(n)) = \{ f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$



Θ notation (Theta)

15

• We say *g*(*n*) is an *asymptotic tight bound* for *f*(*n*):

Theta notation

Θ(g(n)) means that as n → ∞, the execution time f(n) is at most c₂.g(n) and at least c₁.g(n) for some constants c₁ and c₂.

f(n) = Θ(g(n)) if and only if
 f(n) = O(g(n)) & f(n) = Ω(g(n))

Θ notation (Theta) - Example

Example1:

- Show that $6n^3 \neq \Theta(n^2)$
- Suppose for the purpose of contradiction that c_2 and n_0 exist such that $6n^3 \le c_2n^2$ for all $n \ge n_0$
 - Dividing by n² yields
 - $n \le c_2/6$
 - which cannot possibly hold for arbitrary large n, since c₂ is constant
 - Also, $\lim_{n\to\infty} [6n^3 / n^2] = \lim_{n\to\infty} [6n] = \infty$, which is not a non-zero constant

o-notation

We say g(n) is an *upper bound* for f(n) that is *not* asymptotically tight (strictly).

 $o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant}$ $n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}$

Another view, probably easier to use: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$

```
n^{1.9999} = o(n^2)

n^2 / \lg n = o(n^2)

n^2 \neq o(n^2) \text{ (just like } 2 \neq 2)

n^2 / 1000 \neq o(n^2)
```

O() versus o()

 $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n), \text{ for all } n \ge n_0 \}.$ $o(g(n)) = \{f(n): \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.$

Thus o(f(n)) is a weakened O(f(n)). For example: $n^2 = O(n^2)$

$$n^{2} \neq o(n^{2})$$

 $n^{2} = O(n^{3})$
 $n^{2} = o(n^{3})$

ω -notation

19)

We say g(n) is a *lower bound* for f(n) that is not asymptotically tight.

 $\omega(g(n)) = \{ f(n) : \text{ for all constants } c > 0, \text{ there exists a constant} \\ n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}.$

Another view, again, probably easier to use: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

$$n^{2.0001} = \omega(n^2)$$

$$n^2 \lg n = \omega(n^2)$$

$$n^2 \neq \omega(n^2)$$

Properties
20
• Transitivity

$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

 $f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
 $f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$

• Symmetry $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$

Transpose Symmetry
 f(n) = O(g(n)) if and only if g(n) = Ω(f(n))

Some Common Name for Complexity

21

O(1)	Constant time
O(log n)	Logarithmic time
O(log ² n)	Log-squared time
O(n)	Linear time
O(n ²)	Quadratic time
O(n ³)	Cubic time
O(n ⁱ) for some i	Polynomial time
O(2 ⁿ)	Exponential time

Growth Rates of some Functions $O(\log n) < O(\log^2 n) < O(\sqrt{n}) < O(n)$ Inctions $< O(n\log n) < O(n\log^2 n) < O(n^{1.5}) < O(n^2)$ $< O(n^3) < O(n^4)$ $O(n^c) = O(2^{c \log n})$ for any constant c $< O(n^{\log n}) = O(2^{\log^2 n})$ $< O(2^n) < O(3^n) < O(4^n)$ onenti $< O(n!) < O(n^n)$

A Survey of Common Running Times

23

THIS SECTION SLIDES BY KEVIN WAYNE. COPYRIGHT © 2005 PEARSON-ADDISON WESLEY. ALL RIGHTS RESERVED.

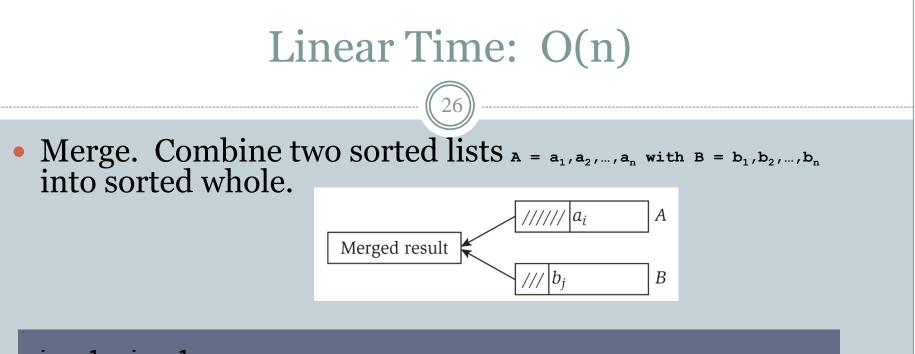
Why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n	$n \log_2 n$	<i>n</i> ²	<i>n</i> ³	1.5 ⁿ	2 ⁿ	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

- Linear time. Running time is at most a constant factor times the size of the input.
- Computing the maximum. Compute maximum of n numbers a₁, ..., a_n.

max =	a ₁
for i	= 2 to n {
if	(a _i > max)
	$\max \leftarrow a_i$
}	



```
i = 1, j = 1
while (both lists are nonempty) {
    if (a<sub>i</sub> ≤ b<sub>j</sub>) append a<sub>i</sub> to output list and increment i
    else(a<sub>i</sub> > b<sub>j</sub>)append b<sub>j</sub> to output list and increment j
}
append remainder of nonempty list to output list
```

- Claim. Merging two lists of size n takes O(n) time.
- Pf. After each comparison, the length of output list increases by 1.

O(n lg n) Time

• O(n lg n) time. Arises in divide-and-conquer algorithms.

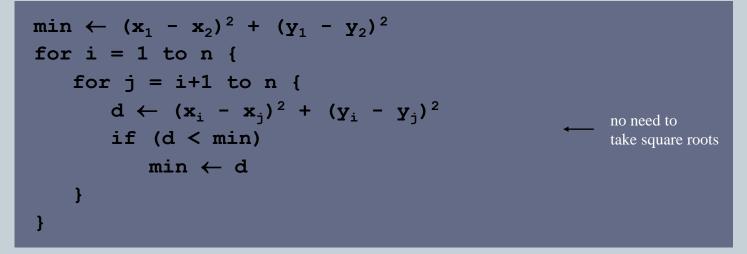
- Sorting. Mergesort and heapsort are sorting algorithms that perform O(n lg n) comparisons.
- Largest empty interval. Given n time-stamps x₁, ..., x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?
- O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: O(n²)

28

• Quadratic time. Enumerate all pairs of elements.

- Closest pair of points. Given a list of n points in the plane (x₁, y₁), ..., (x_n, y_n), find the pair that is closest.
- O(n²) solution. Try all pairs of points.



• Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.

Cubic Time: O(n³)

29

• Cubic time. Enumerate all triples of elements.

- Set disjointness. Given n sets S₁, ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?
- O(n³) solution. For each pairs of sets, determine if they are disjoint.

```
foreach set S_i {

foreach other set S_j {

foreach element p of S_i {

determine whether p also belongs to S_j

}

if (no element of S_i belongs to S_j)

report that S_i and S_j are disjoint
```

Polynomial Time: O(n^k) Time

30

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

• O(n^k) solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets =
- $O(k^2 n^k / k!) = O(n^k).$

$$\binom{n}{k} = \frac{n (n-1) (n-2) \cdots (n-k+1)}{k (k-1) (k-2) \cdots (2) (1)} \leq \frac{n^k}{k!}$$

poly-time for k=17, but not practical 31

• Independent set. Given a graph, what is maximum size of an independent set?

• O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* ← φ
foreach subset S of nodes {
    check whether S in an independent set
    if (S is largest independent set seen so far)
        update S* ← S
    }
}
```