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Measures of Algorithm Complexity
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◼ Worst-Case Running Time:  the longest time for any input size 
of n
◼ an upper bound on running time for any input

◼ Best-Case Running Time:  the shortest time for any input size 
of n
◼ an lower bound on running time for any input

◼ Average-Case Behavior:  the expected performance averaged 
over all possible inputs
◼ it is generally better than worst case behavior, but sometimes it’s roughly 

as bad as worst case



Order of Growth
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◼ For very large input size n, it is the rate of grow, or 

order of growth that matters asymptotically

◼ ignore the lower-order terms, since they are relatively 

insignificant for very large n

◼ ignore leading term’s constant coefficients, since they are not as 

important for the rate of growth in computational efficiency for 

very large n

◼ Higher order functions of n are normally considered 

less efficient



F O R M A L  D E F I N I T I O N S
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O - Notation



Big-O notation 

(Upper Bound – Worst Case)
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Big-O notation 

(Upper Bound – Worst Case)
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◼ A mathematically formal way of ignoring constant factors, and 
looking only at the “shape” of the function

◼ f(n)=O(g(n)) should be considered as saying that “f(n) is at 
most g(n), up to constant factors”.

◼ We usually will have f(n) be the running time of an algorithm 
and g(n) a nicely written function

◼ Example: The running time of insertion sort algorithm is O(n2)



Big-O notation examples
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Big-O notation 

(Upper Bound – Worst Case)
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◼ ignore the multiplicative constants and the 
lower order terms, e.g.,
◼ n, n+1, n+80, 40n, n + log n is O(?)

◼ n1.1 + 10000000000n is O(?)

◼ n2 is O(?)

◼ 3n2 + 6n + log n + 24.5 is O(?)



Practice
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◼ What is the O-notation of  f(N)=3n2 + 6n + log n +24.5

A. O(n)

B. O(n2)

C. O(n3)

D. B and C



Ω-notation (Omega)

(Lower Bound – Best Case) 
11



Ω-notation (Omega)
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◼ We say Insertion Sort’s run time T(n) is Ω(n)

◼ Why?

◼ For example

◼ the worst-case running time of insertion sort is O(n2), and 

◼ the best-case running time of insertion sort is Ω(n)



Ω-notation (Omega)
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Θ notation (Theta)

(Tight Bound)
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Θ notation (Theta)
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◼ We say g(n) is an asymptotic tight bound for f(n):

◼ Theta notation

◼ Θ(g(n)) means that as n → ∞, the execution 
time f(n) is at most c2.g(n) and at least
c1.g(n) for some constants c1 and c2.

◼ f(n) = Θ(g(n))  if and only if  

◼ f(n) = Ο(g(n))  &  f(n) = Ω(g(n))



Θ notation (Theta) - Example
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◼ Example1:

◼ Show that 6n3  (n2)
◼ Suppose for the purpose of contradiction that c2 and n0

exist such that 6n3  c2n
2 for all n  n0

◼ Dividing by n2 yields

◼ n   c2/6

◼ which cannot possibly hold for arbitrary large n, since c2 is 
constant

◼ Also, limn→[6n3 / n2 ] = limn→[6n] = , which is not a non-
zero constant



o-notation
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We say g(n) is an upper bound for f(n) that is not

asymptotically tight (strictly).



O() versus o()
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O(g(n)) = {f(n): there exist positive constants c and n0 such 
that 0 f(n)  cg(n), for all n  n0 }.

o(g(n)) = {f(n): for any positive constant c > 0, there exists a 
constant n0 > 0 such that 0  f(n) < cg(n) for all n  n0 }.

Thus o(f(n)) is a weakened O(f(n)).

For example: n2 = O(n2)

n2  o(n2)

n2 = O(n3)

n2 = o(n3)



ω-notation
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We say g(n) is a lower bound for f(n) that is not asymptotically 

tight.



Properties
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◼ Transitivity
f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))
f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

◼ Symmetry
f(n) = (g(n)) if and only if g(n) = (f(n))

◼ Transpose Symmetry
f(n) = O(g(n)) if and only if g(n) = (f(n)) 



Some Common Name for Complexity
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O(1) Constant time

O(log n) Logarithmic time

O(log2 n) Log-squared time

O(n) Linear time

O(n2) Quadratic time

O(n3) Cubic time

O(ni ) for some i Polynomial time

O(2n) Exponential time



Growth Rates of some Functions
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T H I S  S E C T I O N  S L I D E S  B Y  K E V I N  W A Y N E .
C O P Y R I G H T  ©  2 0 0 5  P E A R S O N - A D D I S O N  W E S L E Y .

A L L  R I G H T S  R E S E R V E D .

A Survey of Common Running 
Times
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Why it matters
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Linear Time:  O(n)
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 Linear time.  Running time is at most a constant 
factor times the size of the input. 

 Computing the maximum.  Compute maximum of n 
numbers a1, …, an.

max = a1
for i = 2 to n {

if (ai > max)

max  ai
}



Linear Time:  O(n)
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 Merge.  Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn

into sorted whole.

 Claim.  Merging two lists of size n takes O(n) time.
 Pf.  After each comparison, the length of output list increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i

else(ai > bj)append bj to output list and increment j

}

append remainder of nonempty list to output list



O(n lg n) Time
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 O(n lg n) time.  Arises in divide-and-conquer algorithms.

 Sorting.  Mergesort and heapsort are sorting algorithms that 
perform O(n lg n) comparisons.

 Largest empty interval.  Given n time-stamps x1, …, xn on 
which copies of a file arrive at a server, what is largest interval 
of time when no copies of the file arrive?

 O(n log n) solution.  Sort the time-stamps.  Scan the sorted list 
in order, identifying the maximum gap between successive 
time-stamps.

also referred to as linearithmic time



Quadratic Time:  O(n2)
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 Quadratic time.  Enumerate all pairs of elements.

 Closest pair of points.  Given a list of n points in the plane (x1, y1), …, (xn, yn), find 
the pair that is closest.

 O(n2) solution.  Try all pairs of points.

 Remark.  (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

for j = i+1 to n {

d  (xi - xj)
2 + (yi - yj)

2

if (d < min)

min  d

}

}

no need to

take square roots



Cubic Time:  O(n3)
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 Cubic time.  Enumerate all triples of elements.

 Set disjointness.  Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

 O(n3) solution.  For each pairs of sets, determine if they are disjoint.

foreach set Si {

foreach other set Sj {

foreach element p of Si {

determine whether p also belongs to Sj

}

if (no element of Si belongs to Sj)

report that Si and Sj are disjoint

}

}



Polynomial Time:  O(nk) Time
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 Independent set of size k.  Given a graph, are there k nodes such 
that no two are joined by an edge?

 O(nk) solution.  Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets = 
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

check whether S in an independent set

if (S is an independent set)

report S is an independent set

}

}

 

n
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 =
n (n−1) (n− 2) (n− k +1)

k (k −1) (k − 2) (2) (1)
   

nk

k!
poly-time for k=17,

but not practical

k is a constant



Exponential Time
31

 Independent set.  Given a graph, what is maximum 
size of an independent set?

 O(n2 2n) solution.  Enumerate all subsets.

S*  

foreach subset S of nodes {

check whether S in an independent set

if (S is largest independent set seen so far)

update S*  S

}

}


