ALGORITHMS & ADVANCED DATA STRUCTURES (#4)

DIVIDE AND CONQUER MERGE SORT & MAXIMUM SUBARRAY & MATRIX MULTIPLICATION

ADAPTED FROM CS 146 SJSU (KATERINA POTIKA)

Designing algorithms

1st Technique: Divide and conquer

- **Divide** the problem into a number of sub-problems.
- **Conquer** the sub-problems by solving them recursively.
 - *Base case:* If the sub-problems are small enough, just solve them by brute force.
- **Combine** the sub-problem solutions to give a solution to the original problem

- Split the input into 2 parts.
- Recursively sort each of them.
- Merge the two sorted parts.

Mergesort – more details

• Each sub-problem as sorting a sub-array *A*[*p*..*r*].

- Initially, p = 1 and r = n, but these values change as we recursively solve sub-problems.
- To sort $A[p \dots r]$:
 - **Divide** by splitting into two sub-arrays
 - *A*[*p* . . *q*]
 - A[q + 1 ... r], where q is the halfway point of A[p ... r].
 - **Conquer** by *recursively* sorting the two sub-arrays A[p . . q] and A[q + 1 . . r].
 - Combine by merging the two sorted sub-arrays A[p..q] and A[q + 1..r] to produce a single sorted sub-array A[p..r].
 - MERGE(A, p, q, r) // basic "sort" operation

• The recursion ends when the sub-array has just 1 element, so that it's trivially sorted.

How do we merge?

- Input: 2 sorted sub-array A[p..q] and A[q+1..r]
- Output: A sorted sub-array A[p..r] which contains all the elements.

Merge(A,p,q,r)

- while there are still elements in the 2 sub-arrays do
- Compare the 1st elements of the sorted 2 sub-arrays.
- Move the minimum of them from its corresponding list to the end of output sub-array.

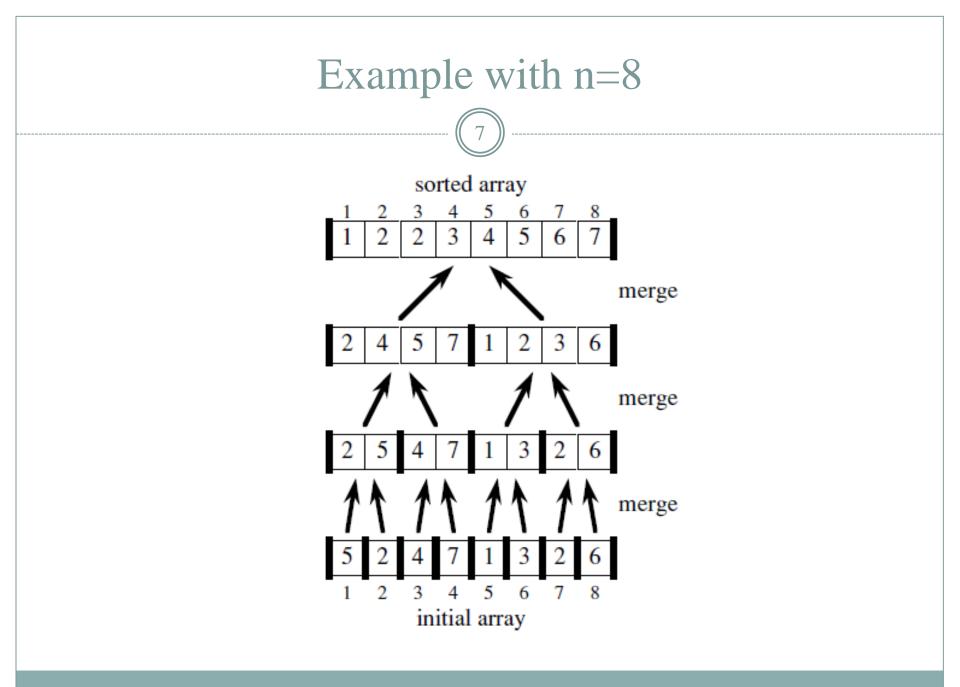
MERGE-SORT(A, p, r)

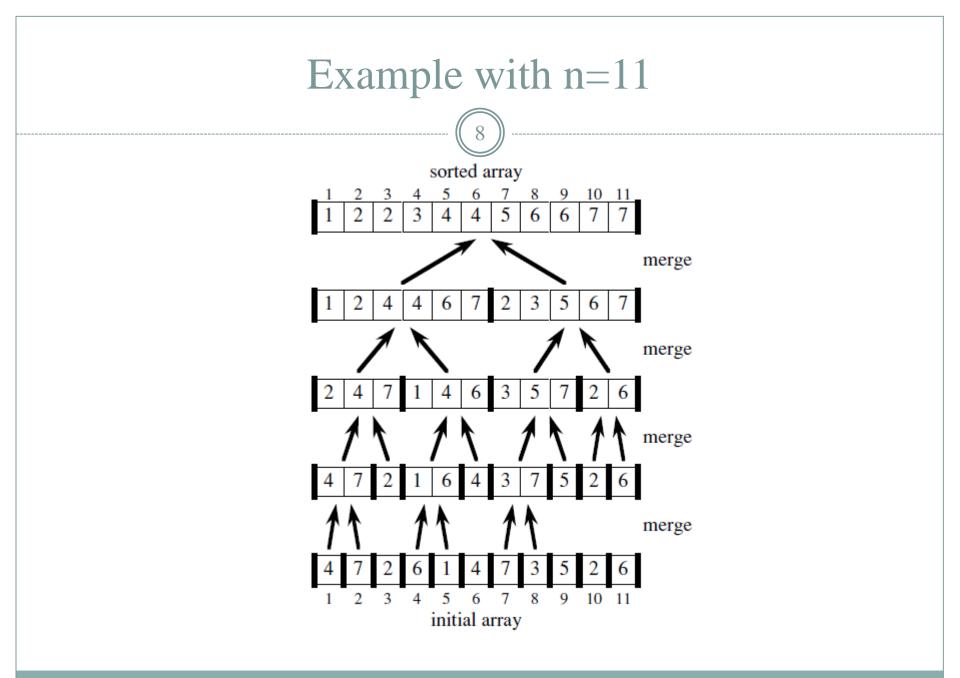
6

if p < r// Check for base casethen $q \leftarrow (p + r)/2$ //DivideMERGE-SORT(A, p, q)// Conquer

MERGE-SORT(A, q + 1, r) MERGE(A, p, q, r) // Conquer // Conquer // Combine

Initial call: MERGE-SORT(A, 1, n)





Analysis of Merge Sort

9

```
Merge-Sort(A, p, r)
if (p < r)
q = \lfloor (p + r)/2 \rfloor
Merge-Sort(A, p, q);
Merge-Sort(A, q+1, r);
Merge(A, p, q, r);
```

//T(n)
//@(1)
//@(1)
//T(n/2)
//T(n/2)
//@(n)

Time analysis

- If the problem size is small, say *c* for some constant *c*, we can solve the problem in constant, i.e., Θ(1) time.
- Let *T*(*n*) be the time needed to sort for input of size *n*.
- Let *cn* be the time needed to merge 2 lists of total size *n*. We know that $cn = \Theta(n)$.
- Assume that the problem can be split into 2 subproblems in constant time and that c = 1.

Recurrences

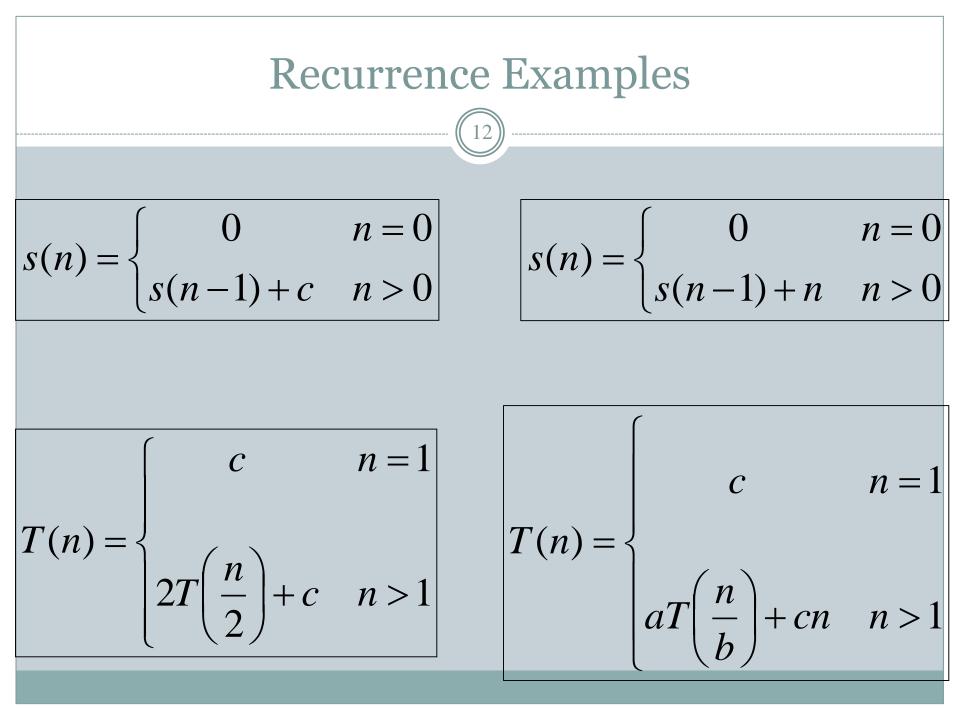
11

• The expression:

$$T(n) = \begin{cases} c & n = 1\\ 2T\left(\frac{n}{2}\right) + cn & n > 1 \end{cases}$$

• is a recurrence.

• Recurrence: an equation that describes a function in terms of its value on smaller functions

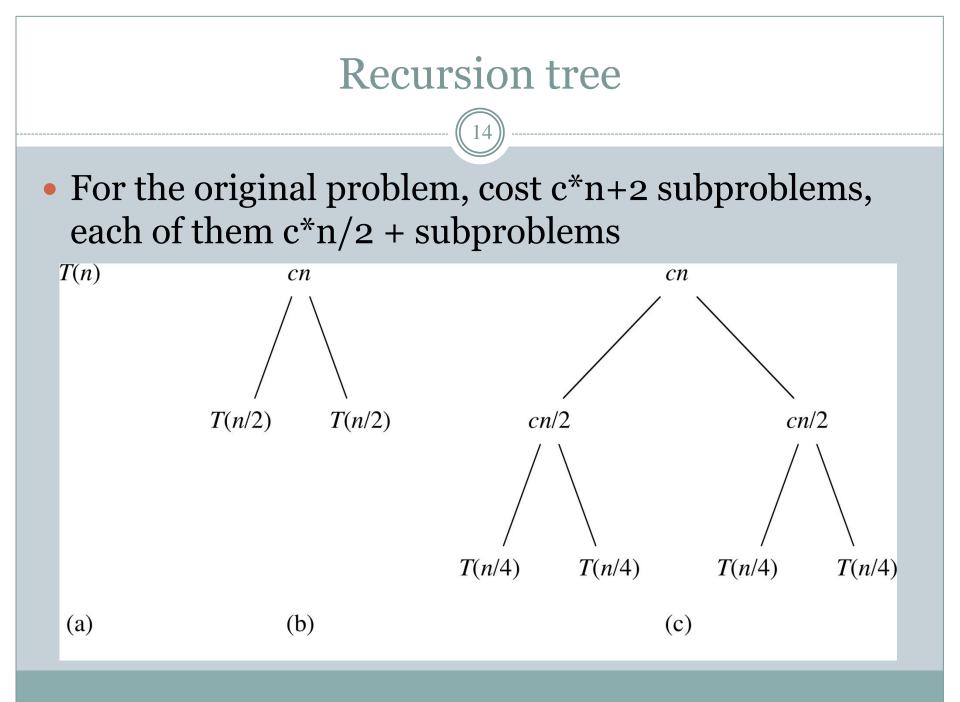


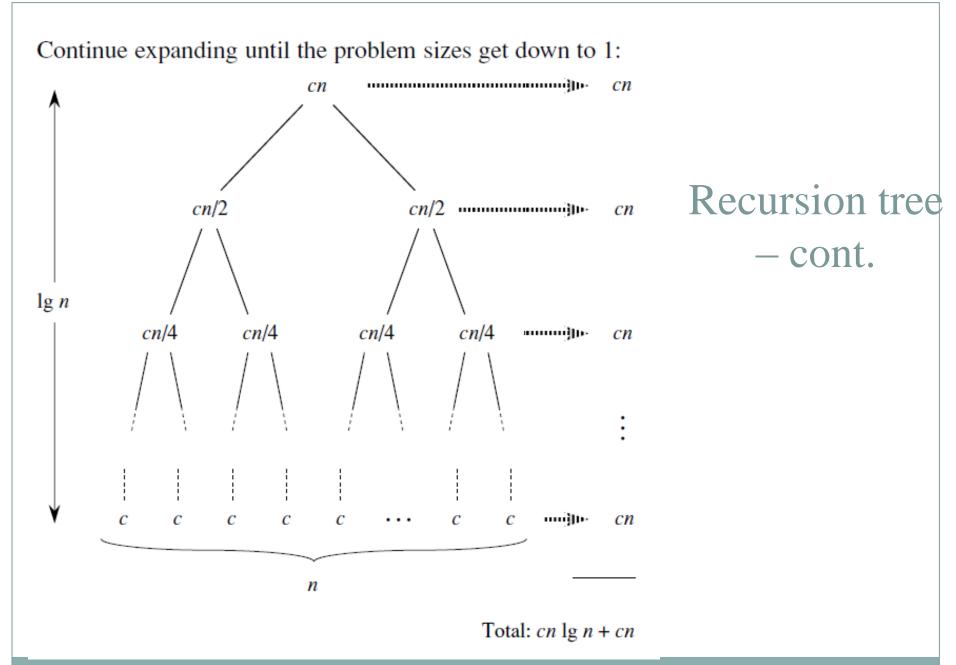
How to we find T(n)

13

Question: Is there a closed form for T(n)?
W.l.o.g., assume n = 2^k (or, lg n = k).

• Note:
$$lgn = log_2n$$





Cost of each level

- Top level: cn
- Next level: c(n/2)+c(n/2)=cn
- Next next level: 4c(n/4)=cn
- General:
- i-th level from top has 2ⁱ nodes
- each with cost $c(n/2^i)$
- Total cost of this level: cn
- Bottom level: n nodes, each cost c

Total number of levels

- is lgn+1, where n: input size (number of leaves)
- Use induction to prove this
- Base case: n=1, only one level lg1 =0
- Inductive Hypothesis: number of levels with 2^i leaves is $\lg 2^i + 1 = i + 1$
- Prove that for n = 2ⁱ⁺¹ leaves (power of 2) one more level than with 2ⁱ leaves, i.e. (i+1)+1=lg
 2ⁱ⁺¹ + 1

Running time of Merge-sort

18

- lgn+1 levels each with cost cn \rightarrow cn(lgn+1)
- Ignore lower order term and c
- Θ(nlgn)

Practice

19

merge sort on the array 3, 41, 52, 26, 38, 57, 9, 49

Maximum Subarray Problem

- Suppose you are a freelancer and that you plan to work at a Mykonos resort for some part of the n-day summer season next year.
- Unfortunately, there isn't enough work for you to be paid every day and you need to cover your own expenses (but you want to go).
- Fortunately, you know in advance that if you are at the resort on the ith day of the season, you'll make p_i euros where p_i could be negative (if expenses are more than earnings) or positive (if expenses are less than earnings).

Maximum Subarray Problem Example

To maximize your earning you should choose carefully which day you arrive and which day you leave; the days you work should be consecutive and you don't need to work all season. For example, if n = 8 and p₁ = -9, p₂ = 10, p₃ = -8, p₄ = 10, p₅ = 5, p₆ = -4, p₇ = -2, p₈ = 5 then if you worked from day 2 to day 5, you would earn 10 - 8 + 10 + 5 = 17 euros in total. Assume the resort pays your airtickets.

Brute force again

- Trivial if only positive numbers (assume not)
- Need to check O(n²) pairs
- For each pair, find the sum
- Thus total time is (see next)

Brute force O(n³)

23

• Calculate the value val(i,j) for each pair i<j and return max

FIND-MAXIMUM-SUBARRAY-BF1(A, 1, n) $\max = A[1]$ **for** i=1 to n for j=i to n val=0 for x=i to j val=val+A[x] if val>max max=val return max A= [-2, -5, 6, -2, -3, 1, 5, -6] the maximum subarray sum is 6-2-3+1+5

Can I do better?

24

• Save on one for loop?

Brute force $O(n^2)$ - Reuse

25

• Reuse previous values

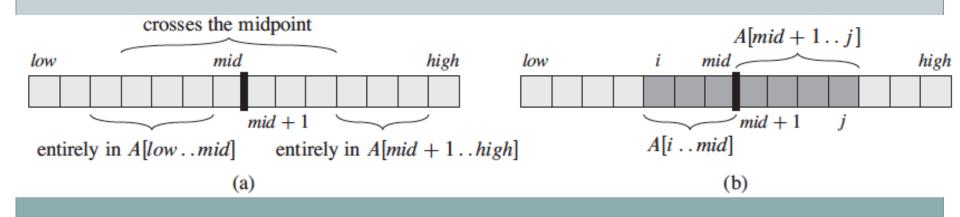
```
FIND-MAXIMUM-SUBARRAY-BF2(A, 1, n)
      \max = A[1]
      for i=1 to n
            val=0
            for j=i to n
                   val=val+A[j]
                   if val>max
                         max=val
      return max
                     A= [-2, -5, 6, -2, -3, 1, 5, -6] the
                      maximum subarray sum is 6-2-3+1+5
```

Divide-and-Conquer

- A[low..high]
- Divide in the middle:
 A[low,mid], A[mid+1,high]
- Any subarray A[i,..j] is
 (1) Entirely in A[low,mid]
 (2) Entirely in A[mid+1,high]
 (3) In both
- (1) and (2) can be found recursively

Divide-and-Conquer (cont.)

- (3) find maximum subarray that crosses midpoint
 Need to find maximum subarrays of the form
 A[i..mid], A[mid+1..j], low <= i, j <= high</p>
- Take subarray with largest sum of (1), (2), (3)



Divide-and-Conquer (cont.)

28

```
Find-Max-Cross-Subarray(A,low,mid,high)
  left-sum = -\infty
   sum = 0
  for i = mid downto low
         sum = sum + A[i]
         if sum > left-sum then
                  left-sum = sum
                  max-left = i
  right-sum = -\infty
   sum = 0
  for j = mid+1 to high
         sum = sum + A[j]
         if sum > right-sum then
                  right-sum = sum
                  max-right = j
return (max-left, max-right, left-sum + right-sum)
```

A= [-2, -5, **6**, **-2**, **-3**, **1**, **5**, -6] the maximum subarray sum is 6-2-3+1

Maximum Subarray

29

FIND-MAXIMUM-SUBARRAY(A, low, high)

```
if high == low
return (low, high, A[low])/ // base case: only one element
else
mid =(low + high)/2
(left-low, left-high, left-sum)=FIND-MAXIMUM-SUBARRAY(A, low, mid)
(right-low, right-high, right-sum)=FIND-MAXIMUM-SUBARRAY(A, mid + 1, high)
(cross-low, cross-high, cross-sum)=FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high)
if left-sum >= right-sum and left-sum >= cross-sum
return (left-low, left-high, left-sum)
elseif right-sum >= left-sum and right-sum >= cross-sum
return (right-low, right-high, right-sum)
else
```

return (cross-low, cross-high, cross-sum)

Time analysis

30

- Find-Max-Cross-Subarray: O(n) time
- Two recursive calls on input size n/2
- Thus:

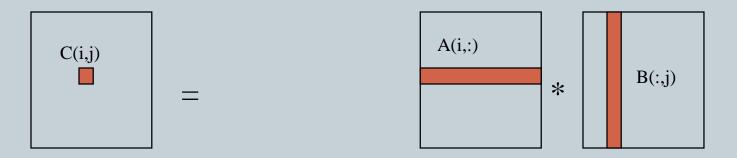
T(n) = 2T(n/2) + O(n) $T(n) = O(n \log n)$

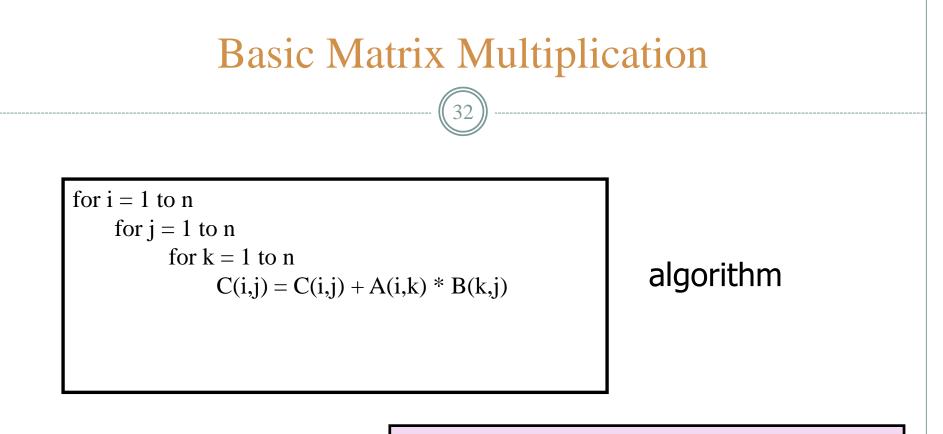
Matrix Multiplication (Strassen's Algorithm)

31

- Another Divide and Conquer Algorithm
- Matrix Multiplication: If A =(aij) and B = (bij) are square nxn matrices, then in the product C= A *B, we define the entry c(ij), for i,j =1,2,...n:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$





Time analysis

$$C_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

Thus $T(N) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} c = cn^{3} = O(n^{3})$

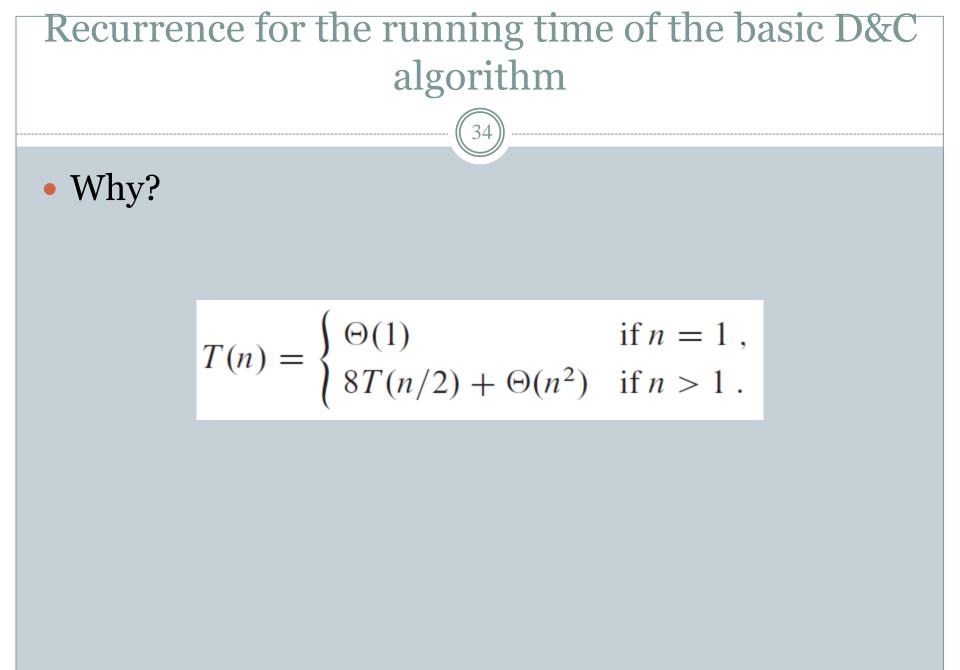
Basic Divide and Conquer Matrix Multiplication

Suppose we want to multiply two matrices of size nxn: for example A * B = C.

$$\begin{vmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{vmatrix} = \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} \begin{vmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{vmatrix}$$

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$
$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$
$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

2x2 matrix multiplication can be accomplished in 8 multiplication. $(2^{\log_2 8} = 2^3)$



Strassen's Matrix Multiplication 35 Strassen observed [1969] that the product of two matrices can be computed in general as follows: C_{11} C_{12} $P_{5} + P_{4} - P_{2} + P_{6}$ $P_{3} + P_{4}$ $P_{1} + P_{2}$ $P_5 + P_1 - P_3 - P_7$

Formulas for Strassen's Algorithm

36

$$P_{1} = A_{11} * (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) * B_{22}$$

$$P_{3} = (A_{21} + A_{22}) * B_{11}$$

$$P_{4} = A_{22} * (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) * (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) * (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) * (B_{11} + B_{12})$$

How much time for computing each parenthesis (10 total): $\Theta(n^2)$

7 multiplications18 additions

Analysis of Strassen's Algorithm

37

If *n* is not a power of 2, matrices can be padded with zeros.

What if we count both multiplications and additions?

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution: $T(n) = n^{\log_2 7} \approx n^{2.807}$ vs. n^3 of brute-force and basic D&C alg.

(see next how to find running time easy)

Algorithms with better asymptotic efficiency are known but they are even more complex and not used in practice.

Practice: Find the maximum element of an array

39

• Complete the missing statements at the end and then find the function that describes the running time of this algorithm and solve it (using O-notation). Use Divide and Conquer.

```
int maxValue(A, left, right)
    if (left==right)
        return A[left]
    mid=(left+right)/2
    ans1=maxValue(left,mid)
    ans2=maxValue(mid+1,right)
```