
O R D E R S TAT I S T I C S

A D A P T E D F R O M

C S 1 4 6 S J S U (K AT E R I N A P O T I K A)

ALGORITHMS & ADVANCED

DATA STRUCTURES (#7)

Order Statistics

 i- th order statistic: i- th smallest element in a set
of n elements

 1-st order statistic: minimum

n- th order statistic: maximum

n /2 order statistic: median
• When n is odd, the median is unique, at i = (n + 1)/2.

• When n is even, there are two medians: lower median, at i = n/2,
and upper median, at i = n/2 + 1.

• “the median: lower median!

• How can we calculate order statistics? What is the
running time?

2

Order Statistics – simple cases

• How many comparisons are needed to find the
minimum element in a set? The maximum?

• Can we find the minimum and maximum with less
than twice the cost?

• Yes:
Walk through elements by pairs
Compare each element in pair to the other
Compare the largest to maximum, smallest to
minimum
Total cost: 3 comparisons per 2 elements = O(3n/2)

3

Selection Problem

 Selection problem:

Input: A set A of n distinct numbers and a number i, with 1 i 
n.

Output: the element x  A that is larger than exactly i – 1 other
elements of A.

 Can be solved in O(n lg n) time. How?

 We will study faster linear-time algorithms.
 For the special cases when i = 1 and i = n.

 For the general problem.

4

Finding Order Statistics: The Selection Problem

• First, present a randomized algorithm, runs in O(𝑛2) worst
case and O(n) average case

• An algorithm of theoretical interest only with O(n) worst-
case running time (why?)

5

Selection in Expected Linear Time

 Modeled after randomized quicksort.

 Uses Randomized-Partition (RP).

 RP returns the index k of a randomly chosen element (pivot).

 If the order statistic we are interested in, i equals k, then we are done.

 Else, reduce the problem size using its other ability.

 RP rearranges the other elements around the random pivot.

 If i < k, selection can be narrowed down to A[1..k – 1].

 Else, select the (i – k)th element from A[k+1..n].

(Assuming RP operates on A[1..n]. For A[p..r], change k appropriately.)

6

Randomized Select Θ(n) expected time

Randomized-Select(A, p, r, i) // select i-th order statistic.

1. if p = r //base case

2. then return A[p]

3. q  Randomized-Partition(A, p, r) // index of pivot

4. k  q – p + 1 //order of pivot

5. if i = k //if the pivot is i-th order statistic

6. then return A[q]

7. elseif i < k // ignore bigger else smaller than pivot

8. then return Randomized-Select(A, p, q – 1, i)

9. else return Randomized-Select(A, q+1, r, i – k)
9. //look for (i-k)-th since k smallest removed

7

Analysis of RS
8

 Worst-case Complexity:

 (n2) – As we could get unlucky and always recurse on a
subarray that is only one element smaller than the previous
subarray.

 Average-case Complexity:

 (n) – Intuition: Because the pivot is chosen at random, we
expect that we get rid of half of the list each time we choose a
random pivot q.

 Why (n) and not (n lg n)?

recursion goes in only one of the two subarrays…

Select in O(n) worst case

 SELECT recursively partitions the input array.
• Idea: Guarantee a good split when the array is
partitioned.
•Use the deterministic procedure PARTITION, but
with a small modification: Instead of assuming that
the last element of the subarray is the pivot, the
modified PARTITION procedure is told which
element to use as the pivot.

9

Choosing a Pivot

 Median-of-Medians:

 Divide the n elements into n/5 groups.

  n/5 groups contain 5 elements each - 1 group contains n
mod 5 < 5 elements.

 Determine the median of each of the groups.

 Sort each group using Insertion Sort. Pick the median from the
sorted list of group elements.

 Recursively find the median x of the n/5 medians.

 Recurrence for running time (of median-of-
medians):

 T(n) = O(n) + T(n/5) + ….

10

Algorithm Select(A,p,r,i)

1. Determine the median-of-medians x (using the
procedure on the previous slide.)

2. Partition the input array around x using the variant
of Partition.

3. Let k be the index of x that Partition returns.
4. If k = i, then return x.
5. Else if i < k, then apply Select recursively to A[1..k–1]

to find the ith smallest element.
6. Else if i > k, then apply Select recursively to A[k+1..n]

to find the (i – k)th smallest element.
(Assumption: Select operates on A[1..n]. For subarrays A[p..r],
suitably change k.)

11

Worst-case Split

Median-of-medians, x

n/5 groups of 5 elements each.

n/5th group of n mod 5

elements.

Arrows point from larger to smaller elements.

Elements > x

Elements < x

12

Worst-case Split

 Assumption: Elements are distinct.

 At least half of the n/5 medians are greater than x.

 Thus, at least half of the n/5 groups contribute 3 elements
that are greater than x.
 The last group and the group containing x may contribute fewer than

3 elements. Exclude these groups.

 Hence, the no. of elements > x is at least

 Analogously, the no. of elements < x is at least 3n/10–6.

 Thus, in the worst case, Select is called recursively on at
most 7n/10+6 elements.

6
10

3
2

52

1
3 






















 nn

13

Recurrence for worst-case running time

 T(Select)  T(Median-of-medians) +T(Partition)
+T(recursive call to select)

 T(n)  O(n) + T(n/5) + O(n) + T(7n/10+6)

= T(n/5) + T(7n/10+6) + O(n)

 Assume T(n)  (1), for n  140.

T(Median-of-medians)
T(Partition) T(recursive call)

14

Solving the recurrence

 To show: T(n) = O(n)  cn for suitable c and all n > 0.
 Assume: T(n)  cn for suitable c and all n  140.
 Substituting the inductive hypothesis into the recurrence,

 T(n)  c n/5 + c(7n/10+6)+an
 cn/5 + c + 7cn/10 + 6c + an
= 9cn/10 + 7c + an
= cn +(–cn/10 + 7c + an)
 cn, if –cn/10 + 7c + an  0.

 n/(n–70) is a decreasing function of n. Verify.
 Hence, c can be chosen for any n = n0 > 70, provided it can be

assumed that T(n) = O(1) for n  n0.
 Thus, Select has linear-time complexity in the worst case.
 In practice the constant is to large to be useful.

–cn/10 + 7c + an  0  c 

10a(n/(n – 70)), when n >

70.

For n  140, c  20a.

15

Example of Selection Algorithm O(n)
7th smallest

 6, 10, 13, 5, 8, 3, 2, 11 groups of 5 (only one)

 6, 10, 13, 5, 8 | 3, 2, 11 find median it is 8

 6, 10, 13, 5, 8 | 3, 2, 11 swap 8 with 6 (A[0])

 8 | 10, 13, 5, 6 | 3, 2, 11 pivot is 8, call partition on A

 5, 6, 3, 2, 8, 10, 13, 11 8 is the 5th smallest

 10, 13, 11 look for 7-5=2nd smallest

 11, is the 7th since less than 5 (run insertion sort)

16

Linear-Time Median Selection

 Given a “black box” O(n) median algorithm, what
can we do?
 ith order statistic:

 Find median x

 Partition input around x

 if (i  (n+1)/2) recursively find ith element of first half

 else find (i - (n+1)/2)th element in second half

 T(n) = T(n/2) + O(n) = O(n)

 Can you think of an application to sorting?

17

Example
18

Medians of 5
19

Median of Medians
20

Smaller than median of medians
21

Larger than median of medians
22

