
L I N E A R T I M E S O RT I N G – L O W E R B O U N D S

A D A P T E D F R O M

C S 1 4 6 S J S U (K AT E R I N A P O T I K A)

ALGORITHMS & ADVANCED

DATA STRUCTURES (#8)

Sorting So Far – 1st Algorithm

2

 Insertion sort:

 Easy implementation

 Fast on small inputs (less than ~50 elements)

 Fast on nearly-sorted inputs

 O(n2) worst case

 O(n2) average (equally-likely inputs) case

 O(n2) reverse-sorted case

Sorting So Far – 2nd Algorithm

3

 Merge sort:

 Divide-and-conquer:

 Split array in half

 Recursively sort subarrays

 Linear-time merge step

 O(n lg n) worst case

 Doesn’t sort in place

Sorting So Far – 3rd Algorithm

4

 Heap sort:

 Uses the heap data structure

 Complete binary tree

 Heap property: parent key > children’s keys

 O(n lg n) worst case

 Sorts in place

 Fair amount of shuffling memory around

Sorting So Far – 4th Algorithm

5

 Quick sort:

 Divide-and-conquer:

 Partition array into two subarrays, recursively sort

 All elements of first subarray < all elements of second subarray

 No merge step needed!

 O(n lg n) average case

 Fast in practice

 O(n2) worst case

 Naïve implementation: worst case on sorted input

 Address this with randomized quicksort

How Fast Can We Sort?

6

 We will provide a lower bound, then beat it

 by playing a different game

 First, an observation: all of the sorting algorithms so far

are comparison sorts

 The only operation used to gain ordering information about a

sequence is the pairwise comparison of two elements

 Theorem: all comparison sorts are Ω(n log n)

 A comparison sort must do Ω(n) comparisons (why?)

 What about the gap between Ω(n) and Ω(n log n)

Decision Trees

7

 Decision trees provide an abstraction of comparison sorts

 A decision tree represents the comparisons made by a comparison

sort. Everything else is ignored

 What do the leaves represent?

 leaf is labeled by the permutation of orders that the algorithm

determines

 How many leaves must there be?

 There are ≥ n! leaves, because every permutation appears at least

once.

Note: Permutations (Appendix C)
8

• A permutation of a finite set S is an ordered sequence of
all the elements of S, each element appearing exactly once.



• For example, if S= {a, b, c}, then S has 6 permutations: abc,
acb, bac, bca, cab, cba

• There are n! permutations of a set of n elements

• we can choose the first element of the sequence in n ways, the
second in n-1 ways, the third in n-2 ,etc.

Example: insertion sort for 3 numbers

9

Decision Trees

10

 Decision trees can model comparison sorts. For a given

algorithm:

 One tree for each n

 Tree paths are all possible execution traces

 What’s the longest path in a decision tree for insertion sort? For

merge sort?

 What is the asymptotic height of any decision tree for

sorting n elements?

 Answer: Ω(n log n) (proof follows)

Lower Bound For

Comparison Sorting

11

 Thm: Any decision tree that sorts n elements has height

Ω(n log n)

 What’s the maximum # of leaves of a binary tree of height

h?

 Lemma: Any binary tree of height h has k ≤ 2ℎ , where

k: # of leaves (proof by induction)

Lower Bound For

Comparison Sorting

12

 So we have…

n! <= 2h

 Taking logarithms:

lg (n!) <=h

 Stirling’s approximation tells us:

 Thus:

n

e

n
n 








!

n

e

n
h 








 log

Lower Bound For

Comparison Sorts

13

 So we have

 Thus the minimum height of a decision tree is Ω(n log n)

 nn

ennn

e

n
h

n

log

loglog

log















Lower Bound For

Comparison Sorts

14

 Thus the time to comparison sort n elements is Ω(n lοg n)

 Corollary: Heapsort and Mergesort are asymptotically

optimal comparison sorts

 “Sorting in linear time” (?)

 How can we do better than Ω(n log n)?

Sorting In Linear Time

15

 Counting sort

 No comparisons between elements!

 But…depends on assumption about the numbers

being sorted

We assume numbers are in the range 1.. k

 The algorithm:

Input: A[1..n], where A[j] ∈{1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage

Counting Sort

16

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Counting Sort

17

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)

Example
18

Counting Sort

19

 Total time: O(n + k)

 Usually, k = O(n)

 Thus counting sort runs in O(n) time

 But sorting is Ω(n log n)

 No contradiction--this is not a comparison sort (in fact, there are

no comparisons at all!)

 Notice that this algorithm is stable (what is that?)

 Stable: keys with same value appear in same order in output

as they did in input

Counting Sort

20

 Cool! Why don’t we always use counting sort?

 Because it depends on range k of elements

 Could we use counting sort to sort 32 bit integers?
Why or why not? How many possible (distinct)
numbers can we have?

 Answer: no, k too large (232 = 4,294,967,296)

Counting Sort

21

 How did IBM get rich originally?

 Answer: punched card readers for census tabulation in

early 1900’s.

 In particular, a card sorter that could sort cards into different bins

 Each column can be punched in 12 places

 Decimal digits use 10 places

 Problem: only one column can be sorted on at a time

Clicker Question 9.1
22

Counting sort performs …………. numbers of
comparisons between input elements.

a) 0

b) n

c) nlogn

d) n2

Radix Sort

23

 Intuitively, you might sort on the most significant digit,

then the second msd, etc.

 Problem: lots of intermediate piles of cards (read: scratch

arrays) to keep track of

 Key idea: sort the least significant digit first

RadixSort(A, d)

for i=1 to d

StableSort(A) on digit i

Example of Radix Sort

24

Radix Sort

25

 Can we prove it will work?

 Sketch of an inductive argument (induction on the

number of passes):

 Assume lower-order digits {j: j<i}are sorted

 Show that sorting next digit i leaves array correctly sorted

 If two digits at position i are different, ordering numbers by that digit is

correct (lower-order digits irrelevant)

 If they are the same, numbers are already sorted on the lower-order

digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

26

 What sort will we use to sort on digits?

 Counting sort is obvious choice:

 Sort n numbers on digits that range from 1..k

 Time: O(n + k)

 Each pass over n numbers with d digits takes time

O(n+k), so total time O(dn+dk)

 When d is constant and k=O(n), takes O(n) time

 How many bits in a computer word?

How to break each key into digits?

27

Bucket Sort

28

 Assumes the input is generated by a random process that

distributes elements uniformly over [0, 1).

 Idea:

 • Divide [0, 1) into n equal-sized buckets.

 • Distribute the n input values into the buckets.

 • Sort each bucket.

 • Then go through buckets in order, listing elements in each one.

 Input: A[1 . . n], where 0 ≤ A[i] < 1 for all i .

 Auxiliary array: B[0 . . n − 1] of linked lists, each list initially

empty.

Bucket sort Code

29

 BUCKET-SORT(A, n)

 for i ← 1 to n

 do insert A[i] into list B[n ・ A[i]]

 for i ← 0 to n − 1

 do sort list B[i] with insertion sort

 concatenate lists B[0], B[1], . . . , B[n −

1] together in order

 return the concatenated lists

Bucket Sort Example
30

Correctness

31

 Consider A[i], A[j]. Assume without loss of generality

that

 A[i] ≤ A[j]. Then n ・ A[i] ≤ n ・ A[j] . So

A[i] is placed into the same bucket as A[j] or into a

bucket with a lower index.

 • If same bucket, insertion sort fixes up.

 • If earlier bucket, concatenation of lists fixes up.

Analysis

32

 • Relies on no bucket getting too many values.

 • All lines of algorithm except insertion sorting take Θ(n)

altogether.

 • Intuitively, if each bucket gets a constant number of elements, it

takes O(1) time to sort each bucket ⇒ O(n) sort time for all

buckets.

 • We “expect” each bucket to have few elements, since the

average is 1 element per bucket.

Analysis

33

• Uniform input distribution has O(1) bucket size

and expected time is O(n)

• Later in Hash Tables again the same idea

Clicker Question 9.2
34

Given n numbers of elements in the range [0….n3 -1].
which of the following sorting algorithms can sort
them in O(n) time?

a) Counting sort

b) Bucket sort

c) Radix sort

d) Quick sort

Structures…
35

 Done with sorting and order statistics

 Next part is data structures Ch 10 (skim)

 Ch 11

Applications
36

 Assume you have an array of objects, instead of
integers, and you know that the possible objects are
limited (constant). How would you sort?

 Given an array of integers in the range from -5 to 5,
write an algorithm that sorts.

 to find the element which appears maximum number of times in
the array.

 Example 4, -1, -5, -2, 1, -5, -2, 2, 0,-5, 3, -2, 4, 1

