ALGORITHMS & ADVANCED
DATA STRUCTURES (#8)

O

Sorting So Far — 15t Algorithm

Sorting So Far — 2" Algorithm

Sorting So Far — 3 Algorithm

e Quick sort:

s Divide-and-conquer:
o Partition array into two subarrays, recursively sort
+ All elements of first subarray < all elements of second subarray
+ No merge step needed!

m O(n Ig n) average case

m Fast in practice

= O(n?) worst case

& Naive implementation: worst case on sorted input
o Address this with randomized quicksort

e \We will provide a lower bound, then beat it
e by playing a different game

e First, an observation: all of the sorting algorithms so far
are comparison sorts

m The only operation used to gain ordering information about a
sequence Is the pairwise comparison of two elements

s Theorem: all comparison sorts are Q(n log n)
+ A comparison sort must do (n) comparisons (why?)
+ What about the gap between Q(n) and Q(n log n)

Decision Trees

e Decision trees provide an abstraction of comparison sorts

m A decision tree represents the comparisons made by a comparison
sort. Everything else is ignored

= What do the leaves represent?

m leaf is labeled by the permutation of orders that the algorithm
determines

= How many leaves must there be?

m There are > n! leaves, because every permutation appears at least
once.

A permutation of a finite set S is an ordered sequence of
all the elements of S, each element appearing exactly once.

For example, if S= {a, b, ¢}, then S has 6 permutations: abc,
acb, bac, bca, cab, cba

There are n! permutations of a set of n elements

we can choose the first element of the sequence in n ways, the
second in n-1 ways, the third in n-2 ,etc.

Example: insertion sort for 3 numbers

S ¥ @) om

e Decision trees can model comparison sorts. For a given
algorithm:
m One tree for each n
m Tree paths are all possible execution traces

m Whats the longest path in a decision tree for insertion sort? For
merge sort?

e What is the asymptotic height of any decision tree for
sorting n elements?

e Answer: Q(nlog n) (proof follows)

e Thm: Any decision tree that sorts n elements has height
Q(n log n)

® Whats the maximum # of leaves of a binary tree of height
N7

e Lemma: Any binary tree of height h hask < 2" where
K. # of leaves (proof by induction)

e So we have...
n! <= 2h

e Taking logarithms:
lg (n!) <=h
e Stirling’s approximation tells us:

h> Iog(ﬂ)
e

(7

e Thus:

e So we have n
N
h> Iog(—j
e

=nlogn—-nloge

= Q(nlogn)
e Thus the minimum height of a decision tree is Q(n log n)

e Thus the time to comparison sort n elements is Q(n log n)

e Corollary: Heapsort and Mergesort are asymptotically
optimal comparison sorts
e ““Sorting in linear time” (?)
= How can we do better than Q(n log n)?

e Counting sort
m No comparisons between elements!

m But...depends on assumption about the numbers
being sorted

+\We assume numbers are in the range 1.. k

m The algorithm:
olnput: A[1..n], where A[j] €{1, 2, 3, ..., k}
+Output: B[1..n], sorted (notice: not sorting In place)
oAlso: Array C[1..k] for auxiliary storage

CountingSort (A, B, k)
for i=1 to k
C[i]= O;
for j=1 to n
CI[A[J]] += 1;
for i=2 to k
C[i] = C[i] + C[i-1];
for j=n downto 1
B[C[A[J]]] = A[3J]’
C[A[3]] -= 1;

O 0 Jd o O & W NN K

=
o

CountingSort (A, B, k)
for i=1 to k
C[i]= O;

< Takes time O(k)

1

2

3

4 for j=1 to n

5 C[A[J]1] += 1;
6 for i=2 to k

7 C[i] = C[i] + C[i-1]; Takes time O(n)
8 for j=n downto 1

9 B[C[A[]j]]] = A[]];

10 C[A[]3]] -= 1;

What will be the running time?

Counting Sort

e Total time: O(n + k)

s Usually, k = O(n)

m Thus counting sort runs in O(n) time
e But sorting is (n log n)

= No contradiction--this is not a comparison sort (in fact, there are
no comparisons at all!)

= Notice that this algorithm is stable (what is that?)

» Stable: keys with same value appear in same order in output
as they did in input

e Cool! Why don’t we always use counting sort?
e Because it depends on range k of elements

e Could we use counting sort to sort 32 bit integers?
Why or why not? How many possible (distinct)
numbers can we have?

e Answer: no, k too large (232 = 4,294,967,296)

e How did IBM get rich originally?

e Answer: punched card readers for census tabulation in

early 1900’s.

= In particular, a card sorter that could sort cards into different bins
Each column can be punched in 12 places
o Decimal digits use 10 places

m Problem: only one column can be sorted on at a time

Counting sort performes numbers of
comparisons between input elements.

a) o

b) n

c) nlogn
d) n2

e Intuitively, you might sort on the most significant digit,
then the second msd, etc.

e Problem: lots of intermediate piles of cards (read: scratch
arrays) to keep track of

e Key idea: sort the least significant digit first
RadixSort(A, d)
fori=1tod
StableSort(A) on digit I

329
457
657
339
436
720
355

~
llllll “ll-
-

720
355
436
457
657
329
839

‘
||||||| III-
4

720
329
436
339
355
457
657

329
355
436
457
657
720
839

e Can we prove it will work?

e Sketch of an inductive argument (induction on the
number of passes):
m Assume lower-order digits {j: j<i}are sorted

m Show that sorting next digit i leaves array correctly sorted

« If two digits at position I are different, ordering numbers by that digit is
correct (lower-order digits irrelevant)

o If they are the same, numbers are already sorted on the lower-order
digits. Since we use a stable sort, the numbers stay in the right order

e \What sort will we use to sort on digits?

e Counting sort Is obvious choice:

m Sort n numbers on digits that range from 1..k
s Time: O(n + k)

e Each pass over n numbers with d digits takes time
O(n+Kk), so total time O(dn+dk)
s When d is constant and k=0(n), takes O(n) time

e How many bits in a computer word?

* nwords

* D bats/word

» Break into r-bit digits. Have d = [b/r] digits

* Use counting sort with £ =2" —1

» Example: 32-bit words, 8-bit digits. b =32, r=8,d =
32/8=4, k=28 —1=1255.

o » Time = O(D/r(n + 27)).

* Choose r = log n gives: @(bn/ log n).

Assumes the input Is generated by a random process that
distributes elements uniformly over [0, 1).

Idea:
 Divide [0, 1) into n equal-sized buckets.
» Distribute the n input values into the buckets.

* Sort each bucket.
* Then go through buckets in order, listing elements in each one.
Input: A[1..n], where 0 <A[i]<1foralli.

Auxiliary array: B[O .. n — 1] of linked lists, each list initially
empty.

BUCKET-SORT (A, n)
for 1 « 1 to n

do insert A[i] into list B[|ln = A[i]]]
for 1 « 0 ton - 1
do sort list B[1i] with insertion sort

concatenate lists B[0], BI[1l],
1] together 1in order

, B[n -

return the concatenated lists

Bucket Sort Example

(30)

Q

S = AN o T v O > oo O

N

aHEIEEEIGIEIEIE e

— N o S wn O~ o o =

Consider A[i], A[J]. Assume without loss of generality
that

Ali]<A[j]. Then|n - A[i]]<|n - A[7]1].So
A1] 1s placed into the same bucket as A[j] or into a
bucket with a lower index.

* [f same bucket, insertion sort fixes up.

e If earlier bucket, concatenation of lists fixes up.

« Relies on no bucket getting too many values.

» All lines of algorithm except insertion sorting take ®(n)
altogether.

e Intuitively, 1f each bucket gets a constant number of elements, it
takes O(1) time to sort each bucket = O(n) sort time for all
buckets.

* We “expect” each bucket to have few elements, since the
average is 1 element per bucket.

Uniform input distribution has O(1) bucket size
and expected time is O(n)

Later in Hash Tables again the same idea

Given n numbers of elements in the range [0....n3-1].
which of the following sorting algorithms can sort
them in O(n) time?

a) Counting sort
b) Bucket sort
c) Radix sort

d) Quick sort

Structures...

Assume you have an array of objects, instead of
integers, and you know that the possible objects are
limited (constant). How would you sort?

Given an array of integers in the range from -5 to 5,
write an algorithm that sorts.

to find the element which appears maximum number of times in
the array.

Example 4,-1,-5,-2,1,-5,-2,2,0,-5,3,-2,4, 1

