
L I N E A R T I M E S O RT I N G – L O W E R B O U N D S

A D A P T E D F R O M

C S 1 4 6 S J S U (K AT E R I N A P O T I K A)

ALGORITHMS & ADVANCED

DATA STRUCTURES (#8)

Sorting So Far – 1st Algorithm

2

 Insertion sort:

 Easy implementation

 Fast on small inputs (less than ~50 elements)

 Fast on nearly-sorted inputs

 O(n2) worst case

 O(n2) average (equally-likely inputs) case

 O(n2) reverse-sorted case

Sorting So Far – 2nd Algorithm

3

 Merge sort:

 Divide-and-conquer:

 Split array in half

 Recursively sort subarrays

 Linear-time merge step

 O(n lg n) worst case

 Doesn’t sort in place

Sorting So Far – 3rd Algorithm

4

 Heap sort:

 Uses the heap data structure

 Complete binary tree

 Heap property: parent key > children’s keys

 O(n lg n) worst case

 Sorts in place

 Fair amount of shuffling memory around

Sorting So Far – 4th Algorithm

5

 Quick sort:

 Divide-and-conquer:

 Partition array into two subarrays, recursively sort

 All elements of first subarray < all elements of second subarray

 No merge step needed!

 O(n lg n) average case

 Fast in practice

 O(n2) worst case

 Naïve implementation: worst case on sorted input

 Address this with randomized quicksort

How Fast Can We Sort?

6

 We will provide a lower bound, then beat it

 by playing a different game

 First, an observation: all of the sorting algorithms so far

are comparison sorts

 The only operation used to gain ordering information about a

sequence is the pairwise comparison of two elements

 Theorem: all comparison sorts are Ω(n log n)

 A comparison sort must do Ω(n) comparisons (why?)

 What about the gap between Ω(n) and Ω(n log n)

Decision Trees

7

 Decision trees provide an abstraction of comparison sorts

 A decision tree represents the comparisons made by a comparison

sort. Everything else is ignored

 What do the leaves represent?

 leaf is labeled by the permutation of orders that the algorithm

determines

 How many leaves must there be?

 There are ≥ n! leaves, because every permutation appears at least

once.

Note: Permutations (Appendix C)
8

• A permutation of a finite set S is an ordered sequence of
all the elements of S, each element appearing exactly once.

• For example, if S= {a, b, c}, then S has 6 permutations: abc,
acb, bac, bca, cab, cba

• There are n! permutations of a set of n elements

• we can choose the first element of the sequence in n ways, the
second in n-1 ways, the third in n-2 ,etc.

Example: insertion sort for 3 numbers

9

Decision Trees

10

 Decision trees can model comparison sorts. For a given

algorithm:

 One tree for each n

 Tree paths are all possible execution traces

 What’s the longest path in a decision tree for insertion sort? For

merge sort?

 What is the asymptotic height of any decision tree for

sorting n elements?

 Answer: Ω(n log n) (proof follows)

Lower Bound For

Comparison Sorting

11

 Thm: Any decision tree that sorts n elements has height

Ω(n log n)

 What’s the maximum # of leaves of a binary tree of height

h?

 Lemma: Any binary tree of height h has k ≤ 2ℎ , where

k: # of leaves (proof by induction)

Lower Bound For

Comparison Sorting

12

 So we have…

n! <= 2h

 Taking logarithms:

lg (n!) <=h

 Stirling’s approximation tells us:

 Thus:

n

e

n
n

!

n

e

n
h

 log

Lower Bound For

Comparison Sorts

13

 So we have

 Thus the minimum height of a decision tree is Ω(n log n)

 nn

ennn

e

n
h

n

log

loglog

log

Lower Bound For

Comparison Sorts

14

 Thus the time to comparison sort n elements is Ω(n lοg n)

 Corollary: Heapsort and Mergesort are asymptotically

optimal comparison sorts

 “Sorting in linear time” (?)

 How can we do better than Ω(n log n)?

Sorting In Linear Time

15

 Counting sort

 No comparisons between elements!

 But…depends on assumption about the numbers

being sorted

We assume numbers are in the range 1.. k

 The algorithm:

Input: A[1..n], where A[j] ∈{1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage

Counting Sort

16

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Counting Sort

17

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)

Example
18

Counting Sort

19

 Total time: O(n + k)

 Usually, k = O(n)

 Thus counting sort runs in O(n) time

 But sorting is Ω(n log n)

 No contradiction--this is not a comparison sort (in fact, there are

no comparisons at all!)

 Notice that this algorithm is stable (what is that?)

 Stable: keys with same value appear in same order in output

as they did in input

Counting Sort

20

 Cool! Why don’t we always use counting sort?

 Because it depends on range k of elements

 Could we use counting sort to sort 32 bit integers?
Why or why not? How many possible (distinct)
numbers can we have?

 Answer: no, k too large (232 = 4,294,967,296)

Counting Sort

21

 How did IBM get rich originally?

 Answer: punched card readers for census tabulation in

early 1900’s.

 In particular, a card sorter that could sort cards into different bins

 Each column can be punched in 12 places

 Decimal digits use 10 places

 Problem: only one column can be sorted on at a time

Clicker Question 9.1
22

Counting sort performs …………. numbers of
comparisons between input elements.

a) 0

b) n

c) nlogn

d) n2

Radix Sort

23

 Intuitively, you might sort on the most significant digit,

then the second msd, etc.

 Problem: lots of intermediate piles of cards (read: scratch

arrays) to keep track of

 Key idea: sort the least significant digit first

RadixSort(A, d)

for i=1 to d

StableSort(A) on digit i

Example of Radix Sort

24

Radix Sort

25

 Can we prove it will work?

 Sketch of an inductive argument (induction on the

number of passes):

 Assume lower-order digits {j: j<i}are sorted

 Show that sorting next digit i leaves array correctly sorted

 If two digits at position i are different, ordering numbers by that digit is

correct (lower-order digits irrelevant)

 If they are the same, numbers are already sorted on the lower-order

digits. Since we use a stable sort, the numbers stay in the right order

Radix Sort

26

 What sort will we use to sort on digits?

 Counting sort is obvious choice:

 Sort n numbers on digits that range from 1..k

 Time: O(n + k)

 Each pass over n numbers with d digits takes time

O(n+k), so total time O(dn+dk)

 When d is constant and k=O(n), takes O(n) time

 How many bits in a computer word?

How to break each key into digits?

27

Bucket Sort

28

 Assumes the input is generated by a random process that

distributes elements uniformly over [0, 1).

 Idea:

 • Divide [0, 1) into n equal-sized buckets.

 • Distribute the n input values into the buckets.

 • Sort each bucket.

 • Then go through buckets in order, listing elements in each one.

 Input: A[1 . . n], where 0 ≤ A[i] < 1 for all i .

 Auxiliary array: B[0 . . n − 1] of linked lists, each list initially

empty.

Bucket sort Code

29

 BUCKET-SORT(A, n)

 for i ← 1 to n

 do insert A[i] into list B[n ・ A[i]]

 for i ← 0 to n − 1

 do sort list B[i] with insertion sort

 concatenate lists B[0], B[1], . . . , B[n −

1] together in order

 return the concatenated lists

Bucket Sort Example
30

Correctness

31

 Consider A[i], A[j]. Assume without loss of generality

that

 A[i] ≤ A[j]. Then n ・ A[i] ≤ n ・ A[j] . So

A[i] is placed into the same bucket as A[j] or into a

bucket with a lower index.

 • If same bucket, insertion sort fixes up.

 • If earlier bucket, concatenation of lists fixes up.

Analysis

32

 • Relies on no bucket getting too many values.

 • All lines of algorithm except insertion sorting take Θ(n)

altogether.

 • Intuitively, if each bucket gets a constant number of elements, it

takes O(1) time to sort each bucket ⇒ O(n) sort time for all

buckets.

 • We “expect” each bucket to have few elements, since the

average is 1 element per bucket.

Analysis

33

• Uniform input distribution has O(1) bucket size

and expected time is O(n)

• Later in Hash Tables again the same idea

Clicker Question 9.2
34

Given n numbers of elements in the range [0….n3 -1].
which of the following sorting algorithms can sort
them in O(n) time?

a) Counting sort

b) Bucket sort

c) Radix sort

d) Quick sort

Structures…
35

 Done with sorting and order statistics

 Next part is data structures Ch 10 (skim)

 Ch 11

Applications
36

 Assume you have an array of objects, instead of
integers, and you know that the possible objects are
limited (constant). How would you sort?

 Given an array of integers in the range from -5 to 5,
write an algorithm that sorts.

 to find the element which appears maximum number of times in
the array.

 Example 4, -1, -5, -2, 1, -5, -2, 2, 0,-5, 3, -2, 4, 1

