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Sorting So Far – 1st Algorithm
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 Insertion sort:

 Easy implementation

 Fast on small inputs (less than ~50 elements)

 Fast on nearly-sorted inputs

 O(n2) worst case

 O(n2) average (equally-likely inputs) case

 O(n2) reverse-sorted case



Sorting So Far – 2nd Algorithm
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 Merge sort:

 Divide-and-conquer:

 Split array in half

 Recursively sort subarrays

 Linear-time merge step

 O(n lg n) worst case

 Doesn’t sort in place



Sorting So Far – 3rd Algorithm
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 Heap sort:

 Uses the heap data structure

 Complete binary tree

 Heap property: parent key > children’s keys

 O(n lg n) worst case

 Sorts in place

 Fair amount of shuffling memory around



Sorting So Far – 4th Algorithm
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 Quick sort:

 Divide-and-conquer:

 Partition array into two subarrays, recursively sort

 All elements of first subarray < all elements of second subarray

 No merge step needed!

 O(n lg n) average case

 Fast in practice

 O(n2) worst case

 Naïve implementation: worst case on sorted input

 Address this with randomized quicksort



How Fast Can We Sort?
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 We will provide a lower bound, then beat it 

 by playing a different game

 First, an observation: all of the sorting algorithms so far 

are comparison sorts

 The only operation used to gain ordering information about a 

sequence is the pairwise comparison of two elements

 Theorem: all comparison sorts are Ω(n log n)

 A comparison sort must do Ω(n) comparisons (why?)

 What about the gap between Ω(n) and Ω(n log n)



Decision Trees
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 Decision trees provide an abstraction of comparison sorts

 A decision tree represents the comparisons made by a comparison 

sort.  Everything else is ignored

 What do the leaves represent?

 leaf is labeled by the permutation of orders that the algorithm

determines

 How many leaves must there be?

 There are ≥ n! leaves, because every permutation appears at least 

once.



Note: Permutations (Appendix C)
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• A permutation of a finite set S is an ordered sequence of 
all the elements of S, each element appearing exactly once.



• For example, if S= {a, b, c}, then S has 6 permutations: abc,
acb, bac, bca, cab, cba

• There are n! permutations of a set of n elements

• we can choose the first element of the sequence in n ways, the 
second in n-1 ways, the third in n-2 ,etc.



Example: insertion sort for 3 numbers
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Decision Trees
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 Decision trees can model comparison sorts.  For a given 

algorithm:

 One tree for each n

 Tree paths are all possible execution traces

 What’s the longest path in a decision tree for insertion sort?  For 

merge sort?

 What is the asymptotic height of any decision tree for 

sorting n elements?

 Answer: Ω(n log n)    (proof follows)



Lower Bound For 

Comparison Sorting
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 Thm: Any decision tree that sorts n elements has height 

Ω(n log n)

 What’s the maximum # of leaves of a binary tree of height 

h?

 Lemma: Any binary tree of height h has k ≤ 2ℎ , where  

k: # of leaves (proof by induction)



Lower Bound For 

Comparison Sorting
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 So we have…    

n! <= 2h

 Taking logarithms:    

lg (n!) <=h

 Stirling’s approximation tells us:

 Thus:
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Lower Bound For 

Comparison Sorts
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 So we have

 Thus the minimum height of a decision tree is Ω(n log n) 
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Lower Bound For 

Comparison Sorts
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 Thus the time to comparison sort n elements is Ω(n lοg n)

 Corollary: Heapsort and Mergesort are asymptotically 

optimal comparison sorts

 “Sorting in linear time” (?)

 How can we do better than Ω(n log n)?



Sorting In Linear Time
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 Counting sort

 No comparisons between elements!

 But…depends on assumption about the numbers 

being sorted

We assume numbers are in the range 1.. k

 The algorithm:

Input: A[1..n], where A[j] ∈{1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage



Counting Sort
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1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;



Counting Sort
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1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)



Example
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Counting Sort
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 Total time: O(n + k)

 Usually, k = O(n)

 Thus counting sort runs in O(n) time

 But sorting is Ω(n log n)

 No contradiction--this is not a comparison sort (in fact, there are 

no comparisons at all!)

 Notice that this algorithm is stable (what is that?)

 Stable: keys with same value appear in same order in output 

as they did in input



Counting Sort
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 Cool!  Why don’t we always use counting sort?

 Because it depends on range k of elements

 Could we use counting sort to sort 32 bit integers?  
Why or why not? How many possible (distinct) 
numbers can we have?

 Answer: no, k too large (232 = 4,294,967,296)



Counting Sort
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 How did IBM get rich originally?

 Answer: punched card readers for census tabulation in 

early 1900’s.  

 In particular, a card sorter that could sort cards into different bins

 Each column can be punched in 12 places

 Decimal digits use 10 places

 Problem: only one column can be sorted on at a time



Clicker Question 9.1
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Counting sort performs …………. numbers of 
comparisons between input elements.

a) 0

b) n

c) nlogn

d) n2 



Radix Sort
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 Intuitively, you might sort on the most significant digit, 

then the second msd, etc.

 Problem: lots of intermediate piles of cards (read: scratch 

arrays) to keep track of

 Key idea: sort the least significant digit first

RadixSort(A, d)

for i=1 to d

StableSort(A) on digit i



Example of Radix Sort
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Radix Sort

25

 Can we prove it will work?

 Sketch of an inductive argument (induction on the 

number of passes):

 Assume lower-order digits {j: j<i}are sorted

 Show that sorting next digit i leaves array correctly sorted 

 If two digits at position i are different, ordering numbers by that digit is 

correct (lower-order digits irrelevant)

 If they are the same, numbers are already sorted on the lower-order 

digits.  Since we use a stable sort, the numbers stay in the right order



Radix Sort
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 What sort will we use to sort on digits?

 Counting sort is obvious choice: 

 Sort n numbers on digits that range from 1..k

 Time: O(n + k)

 Each pass over n numbers with d digits takes time 

O(n+k), so total time O(dn+dk)

 When d is constant and k=O(n), takes O(n) time

 How many bits in a computer word?



How to break each key into digits?
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Bucket Sort
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 Assumes the input is generated by a random process that 

distributes elements uniformly over [0, 1).

 Idea:

 • Divide [0, 1) into n equal-sized buckets.

 • Distribute the n input values into the buckets.

 • Sort each bucket.

 • Then go through buckets in order, listing elements in each one.

 Input: A[1 . . n], where 0 ≤ A[i ] < 1 for all i .

 Auxiliary array: B[0 . . n − 1] of linked lists, each list initially 

empty.



Bucket sort Code

29

 BUCKET-SORT(A, n)

 for i ← 1 to n

 do insert A[i ] into list B[ n ・ A[i] ]

 for i ← 0 to n − 1

 do sort list B[i ] with insertion sort

 concatenate lists B[0], B[1], . . . , B[n − 

1] together in order

 return the concatenated lists



Bucket Sort Example
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Correctness
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 Consider A[i ], A[ j ]. Assume without loss of generality 

that

 A[i ] ≤ A[ j ]. Then n ・ A[i] ≤ n ・ A[j] . So 

A[i ] is placed into the same bucket as A[ j ] or into a 

bucket with a lower index.

 • If same bucket, insertion sort fixes up.

 • If earlier bucket, concatenation of lists fixes up.



Analysis
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 • Relies on no bucket getting too many values.

 • All lines of algorithm except insertion sorting take Θ(n) 

altogether.

 • Intuitively, if each bucket gets a constant number of elements, it 

takes O(1) time to sort each bucket ⇒ O(n) sort time for all 

buckets.

 • We “expect” each bucket to have few elements, since the 

average is 1 element per bucket.



Analysis
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• Uniform input distribution has O(1) bucket size

and expected time is O(n)

• Later in Hash Tables again the same idea



Clicker Question 9.2
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Given n numbers of elements in the range [0….n3 -1]. 
which of the following sorting algorithms can sort 
them in O(n) time?

a) Counting sort

b) Bucket sort

c) Radix sort

d) Quick sort



Structures…
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 Done with sorting and order statistics

 Next part is data structures Ch 10 (skim)

 Ch 11



Applications
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 Assume you have an array of objects, instead of 
integers, and you know that the possible objects are 
limited (constant). How would you sort?

 Given an array of integers in the range from -5 to 5, 
write an algorithm that sorts. 

 to find the element which appears maximum number of times in 
the array.

 Example 4, -1, -5, -2, 1, -5, -2, 2, 0,-5, 3, -2, 4, 1


