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Dynamic Sets
2

 data structures rather than straight 
algorithms

 In particular, structures for dynamic sets

 Elements have a key and satellite data



Dynamic Sets
3

 Dynamic sets support queries such as:
 Search(S, k), 

 Minimum(S), 

 Maximum(S), 

 Successor(S, x), 

 Predecessor(S, x)

 They may also support modifying operations like:
 Insert(S, x), 

 Delete(S, x)



Keys
4

In Java hashCode()



Hash Tables
5

 More formally:

 Given a table T and a record x, with key (= symbol) 
and satellite data, we need to support:

 Insert (T, x)

 Delete (T, x)

 Search(T, x)

 We want these to be fast, but don’t care about sorting 
the records

 The structure we will use is a hash table

 Supports all the above in O(1) expected time!



Example: Direct Addressing
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Resolving Collisions
8

 How can we solve the problem of collisions?

 Solution 1: chaining

 Solution 2: open addressing
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Analysis of Chaining
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 Assume simple uniform hashing: each key in table is 

equally likely to be hashed to any slot

 Given n keys and m slots in the table: the load factor α= 

n/m = average # keys per slot

 What will be the average cost of an  unsuccessful search 

for a key?



Analysis (average-case) of chaining
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 What will be the average cost of an  unsuccessful search 

for a key? A: O(1+α)

 What will be the average cost of a successful search?    A: 

O(1 + α/2) = O(1 + α)



Choosing A Hash Function

12

 Clearly choosing the hash function well is crucial

 What will a worst-case hash function do?

 What will be the time to search in this case?

 What are desirable features of the hash function?

 Should distribute keys uniformly into slots

 Should not depend on patterns in the data

 if we know the keys in advance then we can always 
derive a perfect hash function (each key hashes 
to its own unique location).



Hash Functions: The Division Method

13

 h(k) = k mod m

 In words: hash k into a table with m slots using the slot given by 

the remainder of k divided by m

 What happens to elements with adjacent values of k?

 What happens if m is a power of 2 (say 2P)?

 What if m is a power of 10?

 Upshot: pick table size m = prime number not too close to 

a power of 2 (or 10)



example

 let m = 7

 let k = 8, 14, 12, 2, 4

 let h(k) = k % m

 remind the students that 2 % 7 = 2 ... NOT 5.

 Can you give numbers that will and will not give 
collisions?
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Hash Functions: Universal Hashing
18

 As before, when attempting to foil an malicious 
adversary: randomize the algorithm

 Universal hashing: pick a hash function randomly in 
a way that is independent of the keys that are 
actually going to be stored

 Guarantees good performance on average, no matter what 
keys adversary chooses



Open Addressing
19

 Basic idea: 
 To insert: if slot is full, try another slot, …, until an 

open slot is found (probing)

 To search, follow same sequence of probes as would 
be used when inserting the element
 If reach element with correct key, return it

 If reach a NULL pointer, element is not in table

 Good for fixed sets (adding but no deletion)
Example: spell checking

 Table needn’t be much bigger than n



Linear Probing

 We can think of our hash function as having an extra 
parameter h(k, i), where i is the probe number that 
starts at zero for each key (i.e., it’s the number of the 
try).

 Simplest type of probing
 h(k,i) = (h(k) + i) % m

 This is called linear probing

 With open addressing, we require that for every key k, the probe 
sequence

h(k,0), h(k, 1),... ,h(k,m-1)

Note: m size of hash table
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Insert

 If i=0, then h(k,i) = h(k), i.e., the “home” location of the key. If 
that is occupied, we use the next location to the right, wrapping 
around to the front of the array.

HASH-INSERT(T, k)
1 i = 0
2 do
3 j=h(k,i)
4 if T[j] == NULL
5 T[j]=k
6 return j
7 else i++
8 while i!= m-1
9 error “hash table overflow”
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Linear Probing (cont’d)

 Another example
 m = 9

 k = 0, 9, 18, 27, 36, 45, 54

 Can you do it fast?

 If all keys map to same location -> BAD!

 Talk them through how it is O(n)
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Linear Probing (search cont’d)

 We use the same algorithm for searching as we did 
for insertion. We probe. If we come to an empty 
spot, we can stop and say the key is not in the 
table.

 So what’s the search cost? O(n) ... why? (explain 
worst case)
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Search

HASH-SEARCH(T,k)

1 i =0

2 do

3 j =h(k, i)

4 if T[j] == k

5 return j

6 i ++

7 while T[j] == NULL or i != m

8 return NULL
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Linear Probing (cont’d)

 Assuming simple uniform hashing, what is the expected insertion 
cost?

 Let α = n/m (the load factor of the hash table) 

 0 <= α <= 1

 Percent of time you’ll have a collision?  α

 1 + α + α^2 + α^3 ...

 i.e., no collisions, 1 collision, 2 collisions ...

 This is a geometric series and converges to:

 1 / (1-α)

 Show what happens for half-full table, 90% full table

 100-slot table or 100000-slot table with 90% full ... it still 
takes on average 10 attempts
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Expected cost (con’d)

 So expected behavior depends on load factor, not 
on size of table ... so it’s O(1)

 What’s the catch? Well, expected is good for many 
applications, but not, e.g., missile defense ... the 
worst case is still O(n) with linear probing.

 If α = 0.5, we expect it to take 2 tries to insert a 
key. This does not (directly) depend on the number 
of keys present.
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Linear Probing (problems)

 How good is linear probing?

 Well, consider two hash tables that are 50% full.
 First: full on one side

 Other: sprinkled evenly

 The first exhibits a large cluster of filled slots.  We 
don’t want large clusters.
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Linear Probing (problems)

 Linear probing is prone to primary clustering
(long run of filled locations).

 it takes a long time to get to the end of a cluster, 
and then you wind up just adding to its length
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Hashing (cont’d)

 Linear probing is simple but has the disadvantage 
of primary clustering.

 We can try quadratic probing.
 h(k,i) = (h(k)+i^2) % m

 In general: 

 h(k,i) = (h(k)+c1*i + c2* i^2)%m
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Quadratic Probing

 Ex:
 let m=13

 let h(k,i) = (h(k) + i^2)%m

 let k = 3, 4, 26, 2, 66, 0, 22, 99

 show what happens when collides 

 how it does not result in primary clustering?
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Quadratic Probing

 Quadratic probing avoids the problem of primary 
clustering, but instead has secondary clustering.

 Secondary clustering is a long “run” of filled locations 
along a probe sequence.

 If many keys hash to the same value, those collisions will 

all fill the same probe sequence (right?).

 Still better..
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Quadratic Probing

 Ex: m = 4
 h(k) = (k+i^2)%m

 k = 0, 1, 4

 4 will keep colliding with 0, then 1
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Quadratic Probing

 A bigger problem with quadratic probing is that 
you are not guaranteed to find an empty slot, even 
though one exists.
 make your hash table prime
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Double Hashing

 h(k,i) = (h1(k) + h2(k)*i)%m

 The probe increment is not fixed, but is 
determined by the key itself.

 Why use double hashing?

 It avoids secondary clustering.

 Again, there is no guarantee we will find an empty 
slot, unless we pick our constants very carefully.
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Hashing - DELETION

 how do you find the smallest value in 
sorted, unsorted, or hash table?

 Answer: for the hash table, it isn’t 1 or n, 
it’s m
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Example

 Let’s consider deleting a value from a table:

 let m = 7

 let h(k,i) = (k+i)%m

 insert 4 <draw it>

 insert 7 <draw it>

 delete 7 <draw it>

 insert 11 <draw it>

 find 11 <draw & trace it>

 del 4 <draw it>

 find 11 <draw & trace it ... oops!>
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Hashing - DELETION (cont’d)

 We need to leave a marker when a key is deleted, 
so that when we search for a key, we know that we 
should not stop probing. 
 This marker is called a tombstone.

 For that matter, how do we know if a key is actually 
present in a slot to begin with? We need a flag!

 draw two parallel arrays: data & flags
 flags: E = empty, F = filled, D = deleted
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Hashing (cont’d)

 Searching using flags:

 E => we stop! key is not there

 F => we compare

 if True => stop! found it!

 if False => keep going

 D => keep going! <DON’T compare>

40



Hashing (cont’d)

 So deletions can slow you down. If you are doing a 
lot of deletions, you’re better of using a different 
style of hash table-> CHAINING

 When you insert, you want to remember the first 
deleted spot you found (so that you can reclaim the 
D spots and avoid excessive probing).
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Hashing (cont’d) - insertion

 When inserting, we still probe as usual, but we remember 
the first deleted slot we saw.

 example (to capture first location):

 avail = -1

 if (avail == -1) avail = locn.

 If a deleted spot was found, use it over the empty slot.

 Why? 1. the deleted slot is closer to the home location of 
that key. 2. We get to reclaim a deleted slot.
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Example
43

 Given the following numbers {5, 29, 20, 0, 27, 18} 
and a hash function h(x) = (x % 9): Insert these 
numbers into an initially empty hash table with 
collisions
• resolved by chaining.

• resolved by open addressing with linear probing

 Show the populated hash tables. Assume the array 
that stores this hash table has 9 slots. 



Binary Search Trees (Ch 12)
44

 Binary Search Trees (BSTs) are an important data 
structure for dynamic sets

 In addition to satellite data, elements have:
 key: an identifying field inducing a total ordering

 left: pointer to a left child (may be NULL)

 right: pointer to a right child (may be NULL)

 p: pointer to a parent node (NULL for root)



Binary Search Trees
45

 BST property: 

x [leftSubtree].key  x.key  x[rightSubtree].key

 Example:

F

B H

KDA



Inorder Tree Walk
46

 What does the following code do?
TreeWalk(x)

TreeWalk(x.left);

print(x);

TreeWalk(x.right);

 A: prints elements in sorted (increasing) order

 This is called an inorder tree walk
 Preorder tree walk: print root, then left, then right

 Postorder tree walk: print left, then right, then root



Inorder Tree Walk
47

 Example:

 How long for a tree walk?

 Can your prove that inorder walk prints in 
monotonically increasing order? (induction)

F

B H

KDA



Time complexity of Inorder Walk
48

 Θ(n)



Querying a BST
49

• Search

• Minimum

• Maximum 

• Successor

• Predecessor



Operations on BSTs: Search
50

 Given a key and a pointer to a node, returns an 
element with that key or NULL: 

Tree-Search(x, k)

if (x = NULL  or  k = x.key)

return x;

if (k < x.key) 

return Tree-Search(x.left, k);

else

return Tree-Search(x.right, k);



BST Search: Example
51

 Search for D and C:

F

B H

KDA



Operations on BSTs: Search
52

 Here’s another function that does the same: 

Tree-Search(x, k)

while (x != NULL  and  k != x.key) 

if (k < x.key)

x = x.left;

else

x = x.right;

return x;

 Which of these two functions is more efficient?



Operations of BSTs: Insert
53

 Adds an element x to the tree so that the binary 
search tree property continues to hold

 The basic algorithm
 Like the search procedure above

 Insert x in place of NULL

 Use a “trailing pointer” to keep track of where you came from 
(like inserting into singly linked list)



BST Insert: Example
54

 Example: Insert C

F

B H

KDA

C



BST Search/Insert: Running Time
55

 What is the running time of Tree-Search() or Tree-
Insert()?

 A: O(h), where h = height of tree

 What is the height of a binary search tree?

 A: worst case: h = O(n)  when tree is just a linear 
string of left or right children
 We’ll keep all analysis in terms of h for now

 Later we’ll see how to maintain h = O(lg n)



Sorting With Binary Search Trees
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 Informal pseudo code for sorting array A of length n:
BSTSort(A)

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

 Argue that this is (n lg n)

 What will be the running time in the 
 Worst case?  

 Average case? (hint: remind you of anything?)



Sorting With BSTs
57

 Average case analysis
 It’s a form of quicksort!

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7



Sorting with BSTs
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 Same partitions are done as with quicksort, but in a 
different order
 In previous example

 Everything was compared to 3 once

 Then those items < 3 were compared to 1 once

 Etc.

 Same comparisons as quicksort, different order!

 Example: consider inserting 5



Sorting with BSTs
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 Since run time is proportional to the number of 
comparisons, same time as quicksort: O(n lg n)

 Which do you think is better, quicksort or BSTsort?  
Why?



Sorting with BSTs
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 Since run time is proportional to the number of 
comparisons, same time as quicksort: O(n lg n)

 Which do you think is better, quicksort or BSTSort?  
Why?

 A: quicksort
 Better constants

 Sorts in place

 Doesn’t need to build data structure



More BST Operations
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 BSTs are good for more than sorting.  For example, 
can implement a priority queue

 What operations must a priority queue have?
 Insert

 Minimum

 Extract-Min



BST Operations: Minimum
62

 How can we implement a Minimum() query?

 Where can the minimum be?

 What is the running time?

 What about the Maximum query?



BST Operations: Successor
63

 For deletion, we will need a Successor() operation

 What is the successor of node 3?  Node 15?  Node 13?

 What are the general rules for finding the successor 
of node x?  (hint: two cases) 



BST Operations: Successor
64

 Two cases:
 Case 1: x has a right subtree: successor is minimum node in 

right subtree (leftmost node in right subtree)

 Case 2: x has no right subtree: successor is first ancestor of x 
whose left child is also ancestor of x

 Intuition: As long as you move to the left up the tree, you’re 
visiting smaller nodes.  

 Predecessor: similar algorithm



Successor of 7(case 1) and 13(case2)
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Successor 
66

 TREE-SUCCESSOR(x)

 if x.right !=NIL

 return TREE-MINIMUM(x.right)

 y=x.p

 while y != NIL and x == y.right

 x = y

 y = y.p

 return y



BST Operations: Delete
67

 Deletion is a bit tricky

 3 cases:
 x has no children: 

 Remove x

 x has one child: 

 Splice out x

 x has two children: 

 Swap x with successor

 Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K

or H or B



BST Operations: Delete
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 Why will case 2 always go to case 0 or case 1?

 A: because when x has 2 children, its successor is the 
minimum in its right subtree

 Could we swap x with predecessor instead of 
successor?

 A: yes.  Would it be a good idea?

 A: might be good to alternate



Delete z
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Delete z
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Fig1: 4, 1 & deletemin- Fig2:5, 8,-7, -11
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