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Algorithmic Paradigms
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 Greed.  Build up a solution incrementally, myopically 
optimizing some local criterion.

 Divide-and-conquer.  Break up a problem into two 
sub-problems, solve each sub-problem 
independently, and combine solution to sub-
problems to form solution to original problem. 

 Dynamic programming. Break up a problem into a 
series of overlapping sub-problems, and build up 
solutions to larger and larger sub-problems.



Dynamic Programming History
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 Bellman.  Pioneered the systematic study of dynamic 
programming in the 1950s.

 Etymology.

 Dynamic programming = planning over time.

 Secretary of Defense was hostile to mathematical research.

 Bellman sought an impressive name to avoid confrontation.

 "it's impossible to use dynamic in a pejorative sense"

 "something not even a Congressman could object to"

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.



Dynamic Programming Applications
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 Areas. 
 Bioinformatics.
 Control theory.
 Information theory.
 Operations research.
 Computer science:  theory, graphics, AI, systems, ….

 Some famous dynamic programming algorithms. 
 Viterbi for hidden Markov models.
 Unix diff for comparing two files.
 Smith-Waterman for sequence alignment.
 Bellman-Ford for shortest path routing in networks.
 Cocke-Kasami-Younger for parsing context free grammars.



Dynamic Programming – 3rd technique (Ch 15)

5

• 0-1 Knapsack Problem

• Graph Problems later



Example: Fibonacci numbers

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

•Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

...



Example: Fibonacci numbers  (cont.)

Computing the nth Fibonacci number using bottom-up iteration and recording 

results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…    

F(n-2) = 

F(n-1) = 

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 

     0 

 

    1 

 

 

   1 

 

 .  .  . 

 

 F(n-2) 

 

F(n-1) 

 

 F(n) 

 

 

O(n) 
O(n)

What if we solve 

it recursively?



Automated Memoization
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 Automated memoization.  Many functional programming languages
(e.g., Lisp) have built-in support for memoization.

 Q.  Why not in imperative languages (e.g., Java)?

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

static int F(int n) {

if (n <= 1) return n;

else return F(n-1) + F(n-2);

} 

(defun F (n)

(if

(<= n 1)

n

(+ (F (- n 1)) (F (- n 2)))))

Lisp (efficient)

Java (exponential)



Dynamic programming
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• Not a specific algorithm, but a technique (like divide-and-
conquer).

• Developed back in the day when “programming” meant “tabular 
method” (like linear programming). 

• Used for optimization problems:

• Find a solution with the optimal value.

• Minimization or maximization. (We’ll see both.)

• Use when problem breaks down into recurring small 
subproblems

 optimal substructure: optimal solutions to a problem 
incorporate optimal solutions to related subproblems, 
which we may solve independently. Bottom up. 



Dynamic programming II
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• It is used, when the solution can be recursively 

described in terms of solutions to subproblems

(optimal substructure)

• Algorithm finds solutions to subproblems and 

stores them in memory (table) for later use

• More efficient than “brute-force methods”, which 

solve the same subproblems over and over again



DP: Four-step method
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1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal 
solution.

3. Compute the value of an optimal solution in a 
bottom-up fashion.

4. Construct an optimal solution from computed 
information.

Dynamic programming



Knapsack problem (Ch 16.2)
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• Given some items, pack the knapsack to get the maximum 
total value. 

• Each item has some weight w_i and some value b_i. 

• Total weight that we can carry is no more than some fixed 
number W.

• So we must consider weights of items as well as their 
value.

Item #        Weight    Value

1                 1            8

2                 3            6

3                 5            5



Knapsack problem
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There are two versions of the problem:

(1) “0-1 knapsack problem” and

(2) “Fractional knapsack problem”

(1) Items are indivisible; you either take an item or not. 
Solved with dynamic programming

(2) Items are divisible: you can take any fraction of an item. 
Solved with a greedy algorithm.



0-1 Knapsack problem:
a picture

14

W = 20

wi
bi

109

85

54

43

3
2

Weight Benefit value

This is a knapsack

Max weight: W = 20

Items



0-1 Knapsack problem
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 Problem, in other words, is to find





Ti

i

Ti

i Wwb  subject to max

The problem is called a “0-1” problem, 

because each item must be entirely 

accepted or rejected.

Just another version of this problem is the 

“Fractional Knapsack Problem”, where we 

can take fractions of items. 



Solving The Knapsack Problem
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❑ The optimal solution to the fractional knapsack 
problem can be found with a greedy algorithm

Greedy strategy: take in order of dollars/pound

❑ The optimal solution to the 0-1 problem cannot be 
found with the same greedy strategy



Counter Example of greedy algorithm
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 Consider the 0-1 knapsack problem. What is a good 
example, with 3 items and W=50, that shows that being 
greedy does not provide the optimum profit Take the ratio 
b/w and sort take the two highest (only these fit) is it the 
best you can do? Or can you choose another pair with 
higher b’s?

 a. w=(10,20,30) and b=(40,100,150)

 b. w=(10,20,30) and b=(70,100,60)

 c. w=(10,20,30) and b=(60,100,120)

 d. none



The Knapsack Problem: 
Greedy Vs. Dynamic Programming
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❑ The fractional problem can be solved greedily

❑ The 0-1 problem cannot be solved with a greedy 
approach

❑ however, it can be solved with dynamic programming



The 0-1 Knapsack Problem  
And Optimal Substructure
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 Consider the most valuable load with at most W
pounds

 If we remove item j from the load of the Knapsack, what do 
we know about the remaining load?

 A: remainder must be the most valuable load weighing at most 
W - wj that thief could take from museum, excluding item j 



0-1 Knapsack problem: brute-force approach
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Let’s first solve this problem with a straightforward 
algorithm

❑ Since there are n items, there are 2n possible 
combinations of items.

❑ We go through all combinations and find the one 
with the most total value and with total weight less 
or equal to W

❑ Running time will be O(2n)

❑ Is that fast? 



0-1 Knapsack problem: brute-force approach
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 Can we do better? 

 Yes, with an algorithm based on dynamic 
programming

 We need to carefully identify the subproblems

Let’s try this:

If items are labeled 1..n, then a subproblem

would be to find an optimal solution for 

Sk = {items labeled 1, 2, .. k}



Defining a Subproblem 
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If items are labeled 1..n, then a subproblem would be 
to find an optimal solution for Sk = {items labeled 1, 

2, .. k}

 This is a valid subproblem definition.

 The question is: can we describe the final solution 

(Sn ) in terms of subproblems (Sk)? 

 Unfortunately, we can’t do that. Explanation 

follows….



Defining a Subproblem
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Max weight: W = 20
For S4:
Total weight: 14;
total benefit: 20

w1 =2

b1 =3

w2 =4

b2 =5

w3 =5

b3 =8

w4 =3

b4 =4

wi bi

10

85

54

43

32

Weight Benefit

9

Item

4

3

2

1

5

S4

S5

w1 =2

b1 =3

w2 =4

b2 =5

w3 =5

b3 =8

w4 =9

b4 =10

For S5:
Total weight: 20
total benefit: 26

Solution for S4 is 
not part of the 
solution for S5!!!

?



Defining a Subproblem (continued)
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❑ As we have seen, the solution for S4 is not part of 
the solution for S5

❑ So our definition of a subproblem is flawed and we 
need another one!

❑ Let’s add another parameter: w, which will 
represent the exact weight for each subset of items

❑ The subproblem then will be to compute 
B[k,w]



Recursive Formula for subproblems
25

 It means, that the best subset of Sk that has total 
weight w is one of the two:

1) the best subset of Sk-1 that has total weight w,    or

2) the best subset of Sk-1 that has total weight w-wk

plus the item k





+−−−

−
=

else  }],1[],,1[max{

 if         ],1[
],[

kk

k

bwwkBwkB

wwwkB
wkB

Recursive formula for subproblems:



❑ Recursive Formula
26

❑ The best subset of Sk that has the total weight w,
either contains item k or not.

❑ First case: wk>w. Item k can’t be part of the 
solution, since if it was, the total weight would be > 
w, which is unacceptable

❑ Second case: wk <=w. Then the item k can be in the 
solution, and we choose the case with greater value





+−−−

−
=

else  }],1[],,1[max{

 if         ],1[
],[
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0-1 Knapsack Algorithm (Exer 16.2-3)
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for w = 0 to W

B[0,w] = 0

for i = 0 to n

B[i,0] = 0

for w = 0 to W

if wi <= w // item i can be part of the solution

if (bi + B[i-1,w-wi] > B[i-1,w])

B[i,w] = bi + B[i-1,w- wi]

else

B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w]



Running time
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for w = 0 to W

B[0,w] = 0

for i = 0 to n

B[i,0] = 0

for w = 0 to W

< the rest of the code >

What is the running time of this algorithm?

O(W)

O(W)

Repeat n times

O(n*W)

Remember that the brute-force algorithm 

takes O(2n)



Knapsack Problem by DP (example)

Example:  Knapsack of capacity W = 5

item      weight      profit          

1             2             $12

2             1             $10

3             3             $20

4             2             $15                   capacity j

0     1      2      3     4 5

0

w1 = 2, v1= 12           1

w2 = 1, v2= 10           2

w3 = 3, v3= 20          3

w4  = 2, v4= 15          4

0    0     0

0    0    12

0   10   12 22   22   22 

0   10   12   22   30   32

0   10   15   25   30   37  

Backtracing

finds the actual 

optimal subset, 

i.e. solution.



Example Knapsack
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 Let B = [1, 4, 3] and W = [1, 3, 2] be the array of 
profits and weights the 3 items respectively. Total 
Weight of knapsack is 4



Longest Common Subsequence (LCS)

 A subsequence of a sequence/string S is obtained by 
deleting zero or more symbols from S. For example, 
the following are some subsequences of “president”: 
pred, sdn, predent.  In other words, the letters of a 
subsequence of S appear in order in S, but they are 
not required to be consecutive.

 The longest common subsequence problem is to find 
a maximum length common subsequence between 
two sequences.



LCS

For instance,

Sequence 1: president

Sequence 2: providence

Its LCS is priden.

president

providence



LCS

Another example:

Sequence 1: algorithm

Sequence 2: alignment

One of its LCS is algm.

a l g o r i t h m

a l i g n m e n t



How to compute LCS?

 Let A=a1a2…am and B=b1b2…bn .

 len(i, j): the length of an LCS between 
a1a2…ai and b1b2…bj

 With proper initializations, len(i, j) can be computed as follows.

  ,
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   procedure LCS-Length(A, B) 

1. for i   0 to m do len(i,0) =  0 

2. for j   1 to n do len(0,j) =  0 

3. for i   1 to m do 

4.      for  j   1 to n do 

5.           if ji ba =  then !
²

#

=

+--=

"       "),(

1)1,1(),(

jiprev

jilenjilen
 

6.                           else if )1,(),1( -³- jilenjilen  

7.                                  then !
²

#

=

-=

"      "),(

),1(),(

jiprev

jilenjilen
 

8.                           else !
²

#

=

-=

"       "),(

)1,(),(

jiprev

jilenjilen
 

9. return len and prev 

 



 

 

i j     0 1 

p 

2 

r 

3 

o 

4 

v 

5 

i 

6 

d 

7 

e 

8 

n 

9 

c 

10 

e 

0 0 0 0 0 0 0 0 0 0 0 0 

1  p 

2  

0 1 1 1 1 1 1 1 1 1 1 

2    r 0 1 2 2 2 2 2 2 2 2 2 

3    e 0 1 2 2 2 2 2 3 3 3 3 

4    s 0 1 2 2 2 2 2 3 3 3 3 

5    i 0 1 2 2 2 3 3 3 3 3 3 

6    d 0 1 2 2 2 3 4 4 4 4 4 

7    e 0 1 2 2 2 3 4 5 5 5 5 

8    n 0 1 2 2 2 3 4 5 6 6 6 

9    t 0 1 2 2 2 3 4 5 6 6 6 

 

 

Running time and memory: O(mn) and O(mn).



The backtracing algorithm
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 procedure Output-LCS(A, prev, i, j) 

1 if  i  =  0  or  j  =  0  then return 

2 if  prev(i, j)= ”      “   then !
²

# ---

ia

jiprevALCSOutput

print    

)1,1,,(
 

3 else if  prev(i, j)= ”    “   then  Output-LCS(A, prev, i-1, j) 

4 else  Output-LCS(A, prev, i, j-1) 

 

The backtracing algorithm 



 

 

i j     0 1 

p 

2 

r 

3 

o 

4 

v 

5 

i 

6 

d 

7 

e 

8 

n 

9 

c 

10 

e 

0 0 0 0 0 0 0 0 0 0 0 0 

1  p 

2  

0 1 1 1 1 1 1 1 1 1 1 

2    r 0 1 2 2 2 2 2 2 2 2 2 

3    e 0 1 2 2 2 2 2 3 3 3 3 

4    s 0 1 2 2 2 2 2 3 3 3 3 

5    i 0 1 2 2 2 3 3 3 3 3 3 

6    d 0 1 2 2 2 3 4 4 4 4 4 

7    e 0 1 2 2 2 3 4 5 5 5 5 

8    n 0 1 2 2 2 3 4 5 6 6 6 

9    t 0 1 2 2 2 3 4 5 6 6 6 

 

Output: priden 



In class activity
39

16.1-4

Suppose that we have a set of activities (lectures) to schedule among a large 
number of lecture halls, where any activity can take place in any lecture hall. We 
wish to schedule all the activities using as few lecture halls as possible 
(minimization problem). 

Give an efficient greedy algorithm to determine which activity should use which 
lecture hall. (This problem is also known as the interval-graph coloring 
problem). 

We can create an interval graph whose vertices are the given activities and whose 
edges connect incompatible activities.  Draw an example…

The smallest number of colors required to color every vertex so that no two 
adjacent vertices have the same color corresponds to finding the fewest lecture 
halls needed to schedule all of the given activities.)



1st attempt
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 Use repeated calls to the solution of activity selection algorithm
 Find a maximum-size set S1 of compatible activities from S for the first lecture hall starting 

from the beginning, 
 then using it again to find a maximum-size set S2 of compatible activities from S -S1 for the 

second hall, 
 (and so on until all the activities are assigned), requires Θ(n^2) time in the worst case.

 Is that the optimal (=min #halls)?

 Counterexample: Consider activities with the intervals (1, 4), (2, 5), (6, 7), 
(4, 8).
 1st hall choose the activities (1, 4) and (6, 7) for the first lecture hall, and then each of the 

activities with intervals
 Each of (2, 5) and (4, 8) would have to go each into its own hall, for a total of three halls 

used.

 But optimal solution would put activities (1, 4) and (4, 8) into one
hall and the activities with intervals (2, 5) and (6, 7) into another hall, for only 
two halls used.



2nd attempt
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There is a correct algorithm, however, whose asymptotic time is 
just the time needed to sort the activities by time
 O(n lg n) time for arbitrary times, or 
 possibly as fast as O(n) if the times are small integers.
The general idea is to go through the activities in order of start 
time, assigning each to any hall that is available at that time. To 
do this, move through the set of events consisting of activities 
starting and activities finishing, in order of event time. 
Maintain two lists of lecture halls: 
1. Halls that are busy at the current event time t (because they 

have been assigned an activity i that started at s_i <t but 
won’t finish until f_i > t ) and 

2. halls that are free at time t .
How many halls in a optimal solution?



Continue solution
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 Sort the 2n activity-starts/activity-ends events. (In 
the sorted order, an activity ending event should 
precede an activity-starting event that is at the same 
hall.)
 O(n lg n) time for arbitrary times, possibly O(n) if the times 

are restricted (e.g.,to small range).

 Process the events in O(n) time: Scan the 2n events, 
doing O(1) work for each (moving a hall from one list 
to the other and possibly associating an activity with 
it).

 Total: O(n + time to sort)


