
Dynamic Programming
Gogos Christos

Shortest path in a DAG

Linearization of a DAG

2

Longest increasing subsequence problem

Implicit DAG

3

Edit distance problem

• A natural measure of the
distance between two strings is
the extent to which they can be
aligned, or matched up.

• Example: SNOWY vs SUNNY

• A dynamic programming
solution
• x[1..m] is the first substring

• y[1..n] is the second substring

• Subproblem E(i,j): find the edit
distance between a prefix of the
first substring x[1..i] and a prefix
of the second substring y[1..j]

E(7,5)

4

Express subproblem in terms of smaller
subproblems
• Problem E(i,j)

• Find the best alignment between
x[1..i] and y[1..j]

• The rightmost column can only
be one of three things:

+1 cost
remains to align
x[1..i-1] and y[1..j]

+1 cost
remains to align
x[1..i] and y[1..j-1]

+1 cost if x[i]≠y[j]
remains to align x[1..i-1]
and y[1..j-1]

EXPONENTIAL vs POLYNOMIAL
E(4,3) refers to EXPO vs POL

5

Table of subproblems

The final table of values found by dynamic programmingThe table of subproblems

6

Algorithm and the base cases

• Base cases:
• E(i,0) is the edit distance between the

0-length prefix of y (the empty string)
and the first letters of i➔ E(i,0)=i

• Similarly E(0,j)=j

• The procedure fills in the table row
by row, and left to right within each
row

• Each entry takes constant time to
fill in, so the overall running time is
just the size of the table, O(mn)Edit distance = 6

7

The underlying DAG

• Edges:
• (i-1,j)→(i,j)
• (i,j-1)→(i,j)
• (i-1,j-1)→(i,j)

• Set all edge lengths to 1, except
for:

{(i-1,j-1)→(i,j): x[i]=y[j]}
shown dotted in the figure

• Each move:
• down → deletion
• right → insertion
• diagonal →match or substitution

8

Knapsack problem

• During a robbery, a burglar finds
much more loot than he had
expected and has to decide what to
take

• His bag (or “knapsack”) will hold a
total weight of at most W

• There are n items to pick from, of
weight w1,…,wn and dollar value
v1,…, vn

• What's the most valuable
combination of items he can fit
into his bag?

9

Subproblem definition + DP algorithm

• K(w,j): maximum value
achievable using a knapsack of
capacity w and items 1,…,j

• The answer we seek is K(W,n)

• We can express K(w,j) in terms
of problems K(.,j-1)

either item j is needed to achieve the optimal value, or it isn’t needed

10

Shortest reliable paths

• Find the shortest path from s to t that
uses at most k edges

• In dynamic programming, the trick is
to choose subproblems so that all vital
information is remembered and
carried forward

• Define for each vertex v and each integer
i≤k, dist(v,i) to be the length of the
shortest path from s to v that uses i edges

• The starting values dist(v,0) are ∞ for all
vertices except s, for which it is 0

11

All-pairs shortest paths

• We want to find the shortest path
between all pairs of vertices

• Approach 1: execute |V| times the
shortest path algorithm, once for
each starting node, O(|V|2E)

• Approach 2: Dynamic
Programming, Floyd-Warshall
algorithm, O(|V|3)

• When no intermediate nodes are
allowed, the shortest path from u
to v is simply the direct edge (u,v),
if it exists

• We expand the set of permissible
intermediate nodes (one node at a
time), updating the shortest path
lengths at each step

• Eventually this set grows to all of V,
at which point all vertices are
allowed to be on all paths, and we
have found the true shortest paths
between vertices of the graph

12

All-pairs shortest paths subproblems

• Number the vertices in V as
{1,2,…,n}

• dist(i,j,k): length of the shortest
path from node i to node j in
which only nodes {1,2,…,k} can
be used as intermediates

• dist(i,j,0)=length of the edge
between i and j if it exists, ∞
otherwise

• Expand the intermediate set to
include an extra node:
• reexamine all pairs i,j and check whether

using k as an intermediate point gives us
a shorter path from i to j

13

Floyd-Warshall algorithm

14

Sources

• Algorithms. S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani, 2006

15

