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A series of modifications to the real coded genetic algorithm for the task of locating the glo-
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include a new stopping rule, a novel mutation mechanism and a periodically application
of a local search procedure. The proposed modifications are tested on a series of optimiza-
tion problems and the results are reported.
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1. Introduction

The problem of locating the global minimum of a multidimensional function f ðxÞ : X � Rn ! R with xi 2 ½li; ri�; i ¼ 1; . . . ;n
finds application in many scientific fields such as physics [1,2], astronomy [3,4], chemistry [5,6], economics [7,8] etc. During
the past years many methods have been proposed to tackle this problem. These methods can be divided into two main cat-
egories: deterministic and stochastic. The methods of the first category are more difficult to be implemented and they de-
pend on a priori information about the objective function. On the other side, the methods of the second category are more
general and they are implemented more easily. Some examples of stochastic methods are: Adaptive Random Search [9],
Completive Evolution [10], Controlled Random Search [11], Simulated Annealing [12–15], Genetic Algorithms [16,17], Differ-
ential Evolution [18], Particle Swarm Optimization [19], etc.

The genetic algorithm is a biologically inspired global optimization technique which is based on natural selection, repro-
duction and mutation. This technique works by creation of a population of candidate solutions (chromosomes) that are
evolved through the so called genetic operations of selection, crossover and mutation until some stopping criteria are
met. The technique is general enough and it has been used with success in many scientific and practical fields such as com-
binatorial problems [20], neural network training [21,22], electromagnetics [23], design of water distribution networks [24],
etc. Also, it can be parallelized very easily and many methods that utilize parallel genetic algorithms have been proposed in
the relevant literature [25–27]. Although, genetic algorithms suffer from some disadvantages such as premature or slow con-
vergence to the global minimum. In order to overcome these disefficiencies many variations have been proposed such as
intelligent initialization procedures to ensure diversity in the initial population [28,29], adaptation of control parameters
[30,31], improved genetic operations [32,30,31,33–35,39], new stopping rules [36], hybrid schemes in conjunction with
other stochastic methods [37,38], etc. This article focuses on the enhancement of genetic algorithms by proposing three
modifications namely: (a) a new stopping rule, (b) a new mutation scheme and (c) a periodical application of a local search
procedure.

The rest of this article is organized as follows: in Section 2 the basic real coded genetic algorithm is explained in detail, in
Section 3 the proposed modifications are described, in Section 4 the test problems are listed accompanied with the exper-
imental results and in Section 5 some conclusions are derived.
. All rights reserved.
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2. The basic genetic algorithm

The basic genetic algorithm used in this paper is a genetic algorithm due to Kaelo and Ali [39] and more specific the algo-
rithm GAðcr1; lÞ, which is described in Algorithm 1. In the following the main parts of the algorithm GAðcr1; lÞ are outlined.

2.1. Termination check

The algorithm terminates when
fh � flj j 6 e OR iter > ITERMAX; ð1Þ
where fl denotes the function value of the best chromosome in the population, fh stands for the function value of the worst
chromosome in the population, iter is the current number of generations and ITERMAX denotes the maximum number of
generations allowed.
2.2. Selection and crossover

The selection of two parents x ¼ ðx1; x2; . . . ; xnÞ; y ¼ ðy1; y2; . . . ; ynÞ for crossover is performed using the well known tech-
nique of tournament selection. After the selection of the parents, the offsprings ~x and ~y are created using the following
scheme:
~xi ¼ aixi þ 1� aið Þyi;

~yi ¼ aiyi þ 1� aið Þxi;
ð2Þ
where ai are random numbers in ½�0:5;1:5� [17].

Algorithm 1. The simple genetic algorithm proposed by Caelo and Ali

� Step 1 (initialization):
– Generate N uniformly distributed random points (chromosomes) in X and store them to the set S.
– Set iter = 0

� Step 2 (evaluation): Evaluate the function value of each chromosome.
� Step 3 (termination check): If termination criteria are hold terminate.
� Step 4 (genetic operations):

– Selection: Select m 6 N parents from S.
– Crossover: Create m new points (offsprings) from the previously selected parents.
– Mutation: Mutate the offsprings produced in the crossover step with probability pm.

� Step 5 (replacement): Replace the m worst chromosomes in the population with the previously generated offsprings.
� Step 6 (local technique): Create using the local technique procedure a trial point ~x: If f ð~xÞ 6 f ðxhÞ where xh is the current

worst point in S, then replace xh by ~x.
� Step 7:

– Set iter = iter + 1
– goto step 2
2.3. Mutation procedure

The mutation scheme of the Algorithm 1 is the following: let x ¼ ðx1; x2; . . . ; xnÞ be the chromosome to be mutated where
xi is the element to be changed during the mutation procedure. The resulting element x0i is calculated by
x0i ¼
xi þ D iter;ri � xið Þ; t ¼ 0;
xi � D iter;xi � lið Þ; t ¼ 1;

�
ð3Þ
where t is a random number that takes either the values 0 or 1 and Dðiter;yÞ is given by
Dðiter;yÞ ¼ y 1� r 1� iter
ITERMAXð Þ

� �
; ð4Þ
where r is a random number in ½0;1� and b is a user defined parameter that controls the magnituted of change for ele-
ment xi.
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2.4. Local technique

The proposed local technique creates trial points, in order to replace the worst point in the population. This technique
helps to concentrate the points in S around the global minimum. The steps of the local technique are the following:

1. Select a random point y from S.
2. Construct a trial point ~x using the formula
~xi ¼ 1þ cið Þxl;i � ciyi; i ¼ 1; . . . ;n; ð5Þ
where ci is a random number in ½�0:5;1:5� and xl;i is the ith component of the best chromosome xl.
3. Replace the worst point xh in S with ~x, if f ð~xÞ 6 f ðxhÞ.

3. The proposed modifications

The proposed modifications are consisted of a new stopping rule, a novel mutation mechanism and a periodically appli-
cation of a local optimization procedure. The modifications are explained in the following sections.

3.1. Proposed stopping rule

The stopping rule of Kaelo and Ali focuses on the difference between the best and the worst chromosome in the popu-
lation in order to decide for termination. The algorithm terminates when jfh � flj 6 e, but this decision can be postponed
in many cases, even though the algorithm has managed already to discover the global minimum. This paper proposes an
additional termination check that is based on the observation of the variance of the best discovered value fl. At every gen-
eration denoted by iter, the variance rðiterÞ of fl is recorded. If there is not any improvement for a number of generations, it is
highly possible that the global minimum is already found and hence the algorithm should terminate. The new stopping rule
is used in conjunction with the stopping rule of Eq. (1) and hence the algorithm terminates when
fh � flj j 6 e OR rðiterÞ
6

rðlastÞ

2
OR iter > ITERMAX: ð6Þ
The quantity last denotes the generation where the current best value fl was discovered for the first time.

3.2. The proposed mutation mechanism

The proposed mutation mechanism is based on the update of the velocity in Particle Swarm Optimization methods. The
mutation mechanism is implemented as follows: suppose that the element xi of the chromosome x ¼ ðx1; x2; . . . ; xnÞ is to be
mutated. The new element x0i is calculated using the following equation:
x0i ¼ c1r1 xb
i � xi

� �
þ c2r2 xb

l � xi
� �

; ð7Þ
where the parameters c1 and c2 are two positive constants (acceleration coefficients), r1 and r2 are random numbers in the
range [0,1] and the vector xb is a copy of the best so far position of chromosome x (i.e. the position with the lowest function
value).

3.3. Application of local search

A local search procedure is applied to the best located chromosome xl every K ls generations, where K ls is a user defined
constant that denotes how frequent the local search procedure has to be applied. The purpose of this application is to im-
prove the function value of xl and to speed up the convergence of the algorithm.

4. Experiments

4.1. Test problems

The proposed method was tested against the genetic algorithm of Caelo and Ali on a series of test problems proposed in
[40] and [41]. The description of these test problems is given below.

Ap function
The function Alluffi–Pentiny is given by
f ðxÞ ¼ 1
4

x4
1 �

1
2

x2
1 þ

1
10

x1 þ
1
2

x2
2

with x 2 ½�10;10�2. The value of global minimum is �0.352386.
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Bf1 function
The function Bohachevsky 1 is given by the equation
f ðxÞ ¼ x2
1 þ 2x2

2 �
3

10
cos 3px1ð Þ � 4

10
cos 4px2ð Þ þ 7

10
with x 2 ½�100;100�2. The value of global minimum is 0.0.

Bf2 function
The function Bohachevsky 2 is given by the equation
f ðxÞ ¼ x2
1 þ 2x2

2 �
3

10
cos 3px1ð Þ cos 4px2ð Þ þ 3

10
with x 2 ½�50;50�2. The value of the global minimum is 0.0.

BL function
The Becker and Lago function is given by the equation
f ðxÞ ¼ x1j j � 5ð Þ2 þ x2j j � 5ð Þ2
with x 2 ½�10;10�2. The value of the global minimum is 0.0.

Branin function
The function is defined by f ðxÞ ¼ ðx2 � 5:1

4p2 x2
1 þ 5

p x1 � 6Þ2 þ 10ð1� 1
8pÞ cosðx1Þ þ 10 with �5 6 x1 6 10; 0 6 x2 6 15. The va-

lue of global minimum is 0.397887.

Camel function
The function is given by
f ðxÞ ¼ 4x2
1 � 2:1x4

1 þ
1
3

x6
1 þ x1x2 � 4x2

2 þ 4x4
2; x 2 ½�5;5�2:
The global minimum has the value of f ðx�Þ ¼ �1:0316.

Cb3 function
The three Hump function is given by the equation
f ðxÞ ¼ 2x2
1 � 1:05x4

1 þ
x6

1

6
þ x1x2 þ x2

2

with x 2 ½�5;5�2: The value of the global minimum is 0.0.

Cosine mixture function (CM)
The function is given by the equation
f ðxÞ ¼
Xn

i¼1

x2
i �

1
10

Xn

i¼1

cos 5pxið Þ
with x 2 ½�1;1�n. The value of the global minimum is �0.4 and in our experiments we have used n ¼ 4.

DeJoung function
This function is given by the equation
f ðxÞ ¼ x2
1 þ x2

2 þ x2
3

with x 2 ½�5:12;5:12�3. The value of the global minimum is 0.0.

Easom function
The function is given by the equation
f ðxÞ ¼ � cos x1ð Þ cos x2ð Þ exp x2 � pð Þ2 � x1 � pð Þ2
� �
with x 2 ½�100;100�2: The value of the global minimum is �1.0.



602 I.G. Tsoulos / Applied Mathematics and Computation 203 (2008) 598–607
Exponential function
The function is given by
f ðxÞ ¼ � exp �0:5
Xn

i¼1

x2
i

 !
; �1 6 xi 6 1:
The global minimum is located at x� ¼ ð0;0; . . . ;0Þ with value �1. In our experiments we used this function with
n ¼ 2;4;8;16;32;64 and the corresponding functions are denoted by the labels EXP2, EXP4, EXP8, EXP16, EXP32 and
EXP64.

Gkls function
f ðxÞ ¼ Gklsðx;n;wÞ, is a function with w local minima, described in [42] with x 2 ½�1;1�n and n a positive integer be-

tween 2 and 100. The value of the global minimum is �1 and in our experiments we have used n ¼ 2;3 and w ¼ 50. The
corresponding functions are denoted by the labels GKLS250 and GKLS350.

Goldstein and price function
The function is given by the equation
f ðxÞ ¼ 1þ x1 þ x2 þ 1ð Þ2
h

19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2

� �
�

� ½30þ 2x1 � 3x2ð Þ2 18� 32x1 þ 12x2
1 þ 48x2 � 36x1x2 þ 27x2

2

� �
�

with x 2 ½�2;2�2. The global minimum is located at x� ¼ ð0;�1Þ with value 3.0

Griewank2 function
The function is given by
ðxÞ ¼ 1þ 1
200

X2

i¼1

x2
i �

Y2

i¼1

cosðxiÞffiffiffiffiffiffi
ðiÞ

p ; x 2 ½�100;100�2:
The global minimum is located at the x� ¼ ð0;0; . . . ;0Þ with value 0.

Hansen function
f ðxÞ ¼

P5
i¼1i cos½ði� 1Þx1 þ i�

P5
j¼1j cos½ðjþ 1Þx2 þ j�, x 2 ½�10;10�2. The global minimum of the function is �176.541793.

Hartman 3 function
The function is given by
f ðxÞ ¼ �
X4

i¼1

ci exp �
X3

j¼1

aij xj � pij

� �2

 !
0 1 0 1
with x 2 ½0;1�3 and a ¼

3 10 30
0:1 10 35
3 10 30

0:1 10 35

BB@ CCA; c ¼
1

1:2
3

33:2

BB@ CCA and
p ¼

0:3689 0:117 0:2673
0:4699 0:4387 0:747
0:1091 0:8732 0:5547

0:03815 0:5743 0:8828

0
BBB@

1
CCCA:
The value of global minimum is �3.862782.

Hartman 6 function

4 6
 !
f ðxÞ ¼ �
X
i¼1

ci exp �
X
j¼1

aij xj � pij

� �2
with x 2 ½0;1�6 and a ¼

10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8
17 8 0:05 10 0:1 14

0
BB@

1
CCA; c ¼

1
1:2
3

3:2

0
BB@

1
CCA and
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p ¼

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886

0:2329 0:4135 0:8307 0:3736 0:1004 0:9991

0:2348 0:1451 0:3522 0:2883 0:3047 0:6650

0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

0
BBBB@

1
CCCCA:
The value of global minimum is �3.322368.

Rastrigin function
The function is given by
f ðxÞ ¼ x2
1 þ x2

2 � cosð18x1Þ � cosð18x2Þ; x 2 ½�1;1�2:
The global minimum is located at x� ¼ ð0;0Þ with value �2.0.

Rosenbrock function
This function is given by
f ðxÞ ¼
Xn�1

i¼1

100 xiþ1 � x2
i

� �2 þ xi � 1ð Þ2
� �

; �30 6 xi 6 30:
The global minimum is located at the x� ¼ ð0;0; . . . ;0Þ with f ðx�Þ ¼ 0. In our experiments we used this function with n ¼ 2.

Shekel 5

5

f ðxÞ ¼ �
X
i¼1

1
ðx� aiÞðx� aiÞT þ ci0 1 0 1
with x 2 ½0;10�4 and a ¼

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

BBBB@
CCCCA; c ¼

0:1
0:2
0:2
0:4
0:4

BBBB@
CCCCA. The value of global minimum is �10.107749.

Shekel 7
f ðxÞ ¼ �
X7

i¼1

1

ðx� aiÞðx� aiÞT þ ci
with x 2 ½0;10�4 and a ¼

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3

0
BBBBBBBB@

1
CCCCCCCCA
; c ¼

0:1
0:2
0:2
0:4
0:4
0:6
0:3

0
BBBBBBBB@

1
CCCCCCCCA

. The value of global minimum is �10.342378.

Shekel 10
f ðxÞ ¼ �
X10

i¼1

1

ðx� aiÞðx� aiÞT þ ci
with x 2 ½0;10�4 and a ¼

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3:6 7 3:6

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

; c ¼

0:1
0:2
0:2
0:4
0:4
0:6
0:3
0:7
0:5
0:6

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

. The value of global minimum is �10.536410.

Shubert function
The function is given by f ðxÞ ¼ �

P2
i¼1

P5
j¼1jfsinððjþ 1ÞxiÞ þ 1g; x 2 ½�10;10�2. The value of global minimum is �24.06249.
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Sinusoidal function
The function is given by
Table 1
Results

Functio

AP
BF1
BF2
BL
BRANIN
CAMEL
CB3
CM
DEJOUN
EASOM
EXP2
EXP4
EXP8
EXP16
EXP32
EXP64
GKLS25
GKLS35
GOLDST
GRIEW
HANSE
HARTM
HARTM
RASTRI
ROSENB
SHEKEL
SHEKEL
SHEKEL
SHUBER
SINU2
SINU4
SINU8
SINU16
SINU32
TEST2N
TEST2N
TEST2N
TEST2N
TEST30
TEST30
POTENT
POTENT

Total
f ðxÞ ¼ � 2:5prodn
i¼1 sin xi � zð Þ þ

Yn

i¼1

sin 5 xi � zð Þð Þ
 !

; 0 6 xi 6 p:
The global minimum is located at x� ¼ ð2:09435;2:09435; . . . ;2:09435Þ with f ðx�Þ ¼ �3:5. In our experiments we used
n ¼ 2;4;8;16;32 and z ¼ p

6 and the corresponding functions are denoted by the labels SINU2, SINU4, SINU8, SINU16 and
SINU32, respectively.

Test2N function
This function is given by the equation
f ðxÞ ¼ 1
2

Xn

i¼1

x4
i � 16x2

i þ 5xi; xi 2 ½�5;5�:
The function has 2n in the specified range and in our experiments we used n ¼ 4;5;6;7. The corresponding values of global
minimum is �156.664663 for n ¼ 4, �195.830829 for n ¼ 5, �234.996994 for n ¼ 6 and �274.163160 for n ¼ 7.
of all genetic algorithms for the proposed test functions

n GEN GEN_S GEN_S_M GEN_S_M_LS

1360(0.99) 1360 1277 1253
3992 3356 1640 1615
20234 3373 1676 1636
19596 2412 2439 1463
1442 1418 1404 1257
1358 1358 1336 1300
9771 2045 1163 1118
2105 2105 1743 1539

G 9900 3040 1462 1281
1318 1061 1097 1057
938 936 817 807
1668 1668 1279 1169
3237 3237 2054 1496
8061 8061 3251 1945
9934 9932 5113 2241
9940 9758 7817 2512

0 1286 1286 1284 1218
0 1831(0.94) 1831(0.94) 1757(0.96) 1541(0.96)
EIN 1478 1478 1408 1325

ANK2 18838(0.91) 3111(0.91) 1764 1652(0.99)
N 1887(0.96) 1727(0.96) 1746(0.97) 1624(0.97)
AN3 1350 1350 1332 1274
AN6 2562(0.54) 2562(0.54) 2530(0.67) 1865(0.68)
GIN 1533(0.97) 1523(0.97) 1392 1381
ROCK2 9380 3739 1675 1462
5 2527(0.61) 2507(0.61) 2509(0.69) 2049(0.67)
7 2567(0.72) 2500(0.72) 2511(0.74) 2032(0.75)
10 2641(0.71) 2598(0.71) 2567(0.77) 2141(0.76)
T 1873 1808 1744 1631

1145 1145 1145 1115
2061 2047 2017 1741
3952 3952 3914 3057
9676 9668 9496 6305
9457(0.95) 9366(0.94) 9641(0.97) 8431(0.91)

4 1896 1896 1894 1625
5 2352 2352 2345(0.99) 1928(0.98)
6 2758 2758 2735(0.98) 2229(0.98)
7 3265 3265 3172(0.96) 2586(0.95)
N3 9656 1783 1877 1402
N4 7172 2291 2855 1484
IAL3 4995 3208 3814 2097
IAL5 9276 6684 6642 4301

221768(0.96) 133555(0.96) 111334(0.97) 83185(0.97)
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Test30N function
This function is given by
Table 2
Experim

Problem

SHUBER
HARTM
SHEKEL
SHEKEL
TEST2N
f ðxÞ ¼ 1
10

sin2 3px1ð Þ
Xn�1

i¼2

xi � 1ð Þ2 1þ sin2 3pxiþ1ð Þ
� �� �

þ xn � 1ð Þ2 1þ sin2 2pxnð Þ
� �
with x 2 ½�10;10�. The function has 30n local minima in the specified range and we used n ¼ 3;4 in our experiments. The
value of global minimum for this function is 0.0.
Potential function
The molecular conformation corresponding to the global minimum of the energy of N atoms interacting via the Lennard-

Jones potential is determined for the case of N = 3 and N = 5 atoms (denoted by POTENTIAL3 and POTENTIAL5). The value of
global minimum for POTENTIAL3 is �3.0 and �9.103852 for POTENTIAL5.
4.2. Results

The results from the application of all genetic algorithms are listed in Table 1. The number is cells denote the average
number of function evaluations from 100 independent runs for every objective function in the column Function. The num-
bers in parentheses denote the fraction of runs that located the global minimum and were not trapped in one of the local
minima. Absence of parentheses denotes that the global minimum has been recovered in every single run (100% success).
The columns in the table have the following meaning:

1. The column Function denotes the name of the objective function.
2. The column GEN denotes the simple genetic algorithm listed in Algorithm 1.
3. The column GEN_S denotes the simple genetic algorithm using the additional stopping rule presented in 3.1.
4. The column GEN_S_M denotes the simple genetic algorithm with the use of the previous stopping rule and the mutation

mechanism introduced in 3.2.
5. The column GEN_S_M_LS is the simple genetic algorithm using the proposed stopping rule in conjunction with the pro-

posed mutation mechanism and a repeated application of a local search procedure as described in 3.3 with K ls ¼ 5.

In all algorithms the number of chromosomes (parameter N) used was set to 100 and the maximum number of al-
lowed generations (parameter ITERMAX) was set to 200. The suggested by Caelo and Ali value e ¼ 10�4 was used for
the termination criteria. The mutation was performed with probability 5% and the parameter b of Eq. (4) was set to
b ¼ 5. Tournament selection with tournament size 4 was used for the selection procedure. Also, the local search proce-
dure was applied after the termination on the best located chromosome, in order to ensure that the located point is a
true local minimum. The local search procedure used was a BFGS variant due to Powell [43]. All experiments were per-
formed 100 times on every test problem, using different seed for the random number generator. The last row denoted by
Total is the total number of function calls for the test problems.

As we can see from the experimental results, all the algorithms have managed to locate the global minimum in most
cases and the all variations do not show notable differentiations. Although, it is clear that the proposed stopping rule
enhances the performance of the simple genetic algorithm by preventing the algorithm from the execution of non - re-
quired generations. The speed gain from the application of the additional stopping rule is about 40%. Also, the proposed
mutation mechanism found to be superior than the original mutation scheme and the average gain in function evalua-
tions found to be almost 50%. Finally, the periodic application of the local search procedure to the best located chromo-
some significantly improves the speed and the efficiency of the original algorithm by 63%.

Also, the effect of the parameter K ls is shown in Table 2, where all the proposed modifications (stopping rule, new
mutation mechanism and periodical application of the local search procedure) are applied on a series of objective func-
tions for different value of K ls: As we can see, as the value of K ls is increased, the average number of function evaluations
is also increased without significant improvement to the efficiency of the proposed method.
ental results for different values of the parameter K ls

K ls ¼ 5 K ls ¼ 10 K ls ¼ 15 K ls ¼ 20

T 1631 2207 2288 2348
AN6 1865(0.68) 2755(0.67) 3253(0.67) 3616(0.67)
7 2032(0.75) 2799(0.74) 3038(0.74) 3260(0.74)
10 2141(0.76) 2863(0.78) 3068(0.77) 3370(0.77)
7 2586(0.95) 3354(0.96) 3753(0.96) 3960(0.96)
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5. Conclusions

In this manuscript three modifications of the standard genetic algorithm have been proposed: (a) a new stopping rule
based on asymptotic considerations, (b) a new mutation scheme based on the Particle Swarm Optimization method and
(c) a periodically application of a local search procedure. These modifications are general enough and they can be applied
in every real coded genetic algorithm. The experimental results have clearly shown that these modifications significantly
improve the speed of the original algorithm. Future research will include improved selection and crossover operators in or-
der to improve the speed of the algorithm even further.
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